
Rabbit Year

Smart Contract
Audit Report

09 Jan 2023

Rabbit Year | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Rabbit Year | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Rabbit Year RabbitYear Binance Smart Chain

| Addresses

Contract address 0xA8Baa6Ce72c137A22441b033C5F9FA5A3c60ADDC

Contract deployer address 0x2857417abBcE3C5fce73d14b71dDaF26E7E7e71c

| Project Website

https://www.rabbityear2023.net/

| Codebase

https://bscscan.com/address/0xA8Baa6Ce72c137A22441b033C5F9FA5A3c60ADDC#code

https://www.rabbityear2023.net/
https://bscscan.com/address/0xA8Baa6Ce72c137A22441b033C5F9FA5A3c60ADDC#code

Rabbit Year | Security Analysis

SUMMARY

Rabbityyear Token is a powerful MEME coin, and its goal is to become a decentralized community ecological
project with a real purpose. The mission of RabbitYear Token is to bring the interesting new concept of
cryptocurrency meme to mainstream investors, and raise RabbitYear Token to a new level of investment due to
the buff of the large-scale Chinese New Year performances.

| Contract Summary

Documentation Quality

Rabbit Year provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Rabbit Year with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 202, 214, 227, 228, 239, 251, 263, 267, 279, 286, 295, 931, 1221, 1240, 1262, 1295, 1297, 1318,
1319, 1344, 1346, 1441, 1476, 1563, 1848, 1858, 1861, 1991, 1991, 1992, 2040, 2071, 2267, 2269, 2271,
2277, 2279, 2281, 2312, 2330, 2386 and 931.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 10.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 900, 932, 937, 1854, 1974, 1975, 1976, 1978, 1979, 1980, 1981,
1983, 1984, 1985, 1986, 1998, 2006, 2041, 2072, 2337, 2338, 2355, 2356 and 2357.
SWC-115 | tx.origin should not be used for authorization, use msg.sender instead on lines 2165 and
2299.

Rabbit Year | Security Analysis

CONCLUSION

We have audited the Rabbit Year project released on January 2023 to discover issues and identify potential
security vulnerabilities in Rabbit Year Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the Rabbit Year smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, tx.origin as a part of authorization control, and out of bounds array access which the index
access expression can cause an exception in case of the use of an invalid array index value. We recommend
avoiding "tx.origin" Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities.
Consider using "msg.sender" unless you really know what you are doing.

Rabbit Year | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Rabbit Year | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization.
ISSUE

FOUND

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Rabbit Year | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Rabbit Year | Security Analysis

SMART CONTRACT ANALYSIS

Started Sunday Jan 08 2023 07:14:13 GMT+0000 (Coordinated Universal Time)

Finished Monday Jan 09 2023 03:46:27 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File BABYTOKEN.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 202

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

201 function add(uint256 a, uint256 b) internal pure returns (uint256) {

202 uint256 c = a + b;

203 require(c >= a, "SafeMath: addition overflow");

204

205 return c;

206

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 214

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

213 require(b <= a, errorMessage);

214 uint256 c = a - b;

215

216 return c;

217 }

218

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 227

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

226

227 uint256 c = a * b;

228 require(c / a == b, "SafeMath: multiplication overflow");

229

230 return c;

231

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 228

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

227 uint256 c = a * b;

228 require(c / a == b, "SafeMath: multiplication overflow");

229

230 return c;

231 }

232

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 239

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

238 require(b > 0, errorMessage);

239 uint256 c = a / b;

240 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

241

242 return c;

243

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 251

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

250 require(b != 0, errorMessage);

251 return a % b;

252 }

253 }

254

255

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 263

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

262 function mul(int256 a, int256 b) internal pure returns (int256) {

263 int256 c = a * b;

264

265 // Detect overflow when multiplying MIN_INT256 with -1

266 require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

267

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 267

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

266 require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

267 require((b == 0) || (c / b == a));

268 return c;

269 }

270

271

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 279

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

278 // Solidity already throws when dividing by 0.

279 return a / b;

280 }

281

282 /**

283

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 286

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

285 function sub(int256 a, int256 b) internal pure returns (int256) {

286 int256 c = a - b;

287 require((b >= 0 && c <= a) || (b < 0 && c > a));

288 return c;

289 }

290

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 295

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

294 function add(int256 a, int256 b) internal pure returns (int256) {

295 int256 c = a + b;

296 require((b >= 0 && c >= a) || (b < 0 && c < a));

297 return c;

298 }

299

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 931

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

930 uint256 index = map.indexOf[key];

931 uint256 lastIndex = map.keys.length - 1;

932 address lastKey = map.keys[lastIndex];

933

934 map.indexOf[lastKey] = index;

935

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1221

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

1220 unchecked {

1221 _approve(sender, _msgSender(), currentAllowance - amount);

1222 }

1223

1224 return true;

1225

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1240

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

1239 function increaseAllowance(address spender, uint256 addedValue) public virtual

returns (bool) {

1240 _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);

1241 return true;

1242 }

1243

1244

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1262

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

1261 unchecked {

1262 _approve(_msgSender(), spender, currentAllowance - subtractedValue);

1263 }

1264

1265 return true;

1266

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1295

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

1294 unchecked {

1295 _balances[sender] = senderBalance - amount;

1296 }

1297 _balances[recipient] += amount;

1298

1299

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1297

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

1296 }

1297 _balances[recipient] += amount;

1298

1299 emit Transfer(sender, recipient, amount);

1300

1301

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1318

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

1317

1318 _totalSupply += amount;

1319 _balances[account] += amount;

1320 emit Transfer(address(0), account, amount);

1321

1322

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1319

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

1318 _totalSupply += amount;

1319 _balances[account] += amount;

1320 emit Transfer(address(0), account, amount);

1321

1322 _afterTokenTransfer(address(0), account, amount);

1323

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1344

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

1343 unchecked {

1344 _balances[account] = accountBalance - amount;

1345 }

1346 _totalSupply -= amount;

1347

1348

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 1346

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

1345 }

1346 _totalSupply -= amount;

1347

1348 emit Transfer(account, address(0), amount);

1349

1350

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1441

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

1440 // see https://github.com/ethereum/EIPs/issues/1726#issuecomment-472352728

1441 uint256 internal constant magnitude = 2**128;

1442

1443 uint256 internal magnifiedDividendPerShare;

1444

1445

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1476

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

1475 magnifiedDividendPerShare = magnifiedDividendPerShare.add(

1476 (amount).mul(magnitude) / totalSupply()

1477);

1478 emit DividendsDistributed(msg.sender, amount);

1479

1480

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1563

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

1562 return

1563 magnifiedDividendPerShare

1564 .mul(balanceOf(_owner))

1565 .toInt256Safe()

1566 .add(magnifiedDividendCorrections[_owner])

1567

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1848

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

1847 while (gasUsed < gas && iterations < numberOfTokenHolders) {

1848 _lastProcessedIndex++;

1849

1850 if (_lastProcessedIndex >= tokenHoldersMap.keys.length) {

1851 _lastProcessedIndex = 0;

1852

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1858

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

1857 if (processAccount(payable(account), true)) {

1858 claims++;

1859 }

1860 }

1861 iterations++;

1862

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1861

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

1860 }

1861 iterations++;

1862

1863 uint256 newGasLeft = gasleft();

1864

1865

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1991

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

1990

1991 uint256 totalSupply = totalSupply_ * (10**18);

1992 swapTokensAtAmount = totalSupply.mul(2).div(10**6); // 0.002%

1993

1994 // use by default 300,000 gas to process auto-claiming dividends

1995

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1991

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

1990

1991 uint256 totalSupply = totalSupply_ * (10**18);

1992 swapTokensAtAmount = totalSupply.mul(2).div(10**6); // 0.002%

1993

1994 // use by default 300,000 gas to process auto-claiming dividends

1995

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1992

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

1991 uint256 totalSupply = totalSupply_ * (10**18);

1992 swapTokensAtAmount = totalSupply.mul(2).div(10**6); // 0.002%

1993

1994 // use by default 300,000 gas to process auto-claiming dividends

1995 gasForProcessing = 300000;

1996

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 2040

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

2039 function multipleBotlistAddress(address[] calldata accounts, bool excluded) public

onlyOwner {

2040 for (uint256 i = 0; i < accounts.length; i++) {

2041 _isBlacklisted[accounts[i]] = excluded;

2042 }

2043 }

2044

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 2071

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

2070 function excludeMultipleAccountsFromFees(address[] calldata accounts, bool

excluded) public onlyOwner {

2071 for(uint256 i = 0; i < accounts.length; i++) {

2072 _isExcludedFromFees[accounts[i]] = excluded;

2073 }

2074

2075

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 2267

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

2266 LFee = amount.mul(buyLiquidityFee).div(100);

2267 AmountLiquidityFee += LFee;

2268 RFee = amount.mul(buyTokenRewardsFee).div(100);

2269 AmountTokenRewardsFee += RFee;

2270 MFee = amount.mul(buyMarketingFee).div(100);

2271

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 2269

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

2268 RFee = amount.mul(buyTokenRewardsFee).div(100);

2269 AmountTokenRewardsFee += RFee;

2270 MFee = amount.mul(buyMarketingFee).div(100);

2271 AmountMarketingFee += MFee;

2272 DFee = amount.mul(buyDeadFee).div(100);

2273

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 2271

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

2270 MFee = amount.mul(buyMarketingFee).div(100);

2271 AmountMarketingFee += MFee;

2272 DFee = amount.mul(buyDeadFee).div(100);

2273 fees = LFee.add(RFee).add(MFee).add(DFee);

2274 }

2275

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 2277

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

2276 LFee = amount.mul(sellLiquidityFee).div(100);

2277 AmountLiquidityFee += LFee;

2278 RFee = amount.mul(sellTokenRewardsFee).div(100);

2279 AmountTokenRewardsFee += RFee;

2280 MFee = amount.mul(sellMarketingFee).div(100);

2281

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 2279

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

2278 RFee = amount.mul(sellTokenRewardsFee).div(100);

2279 AmountTokenRewardsFee += RFee;

2280 MFee = amount.mul(sellMarketingFee).div(100);

2281 AmountMarketingFee += MFee;

2282 DFee = amount.mul(sellDeadFee).div(100);

2283

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 2281

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

2280 MFee = amount.mul(sellMarketingFee).div(100);

2281 AmountMarketingFee += MFee;

2282 DFee = amount.mul(sellDeadFee).div(100);

2283 fees = LFee.add(RFee).add(MFee).add(DFee);

2284 }

2285

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 2312

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

2311 IERC20(rewardToken).transfer(_marketingWalletAddress, newBalance);

2312 AmountMarketingFee = AmountMarketingFee - tokens;

2313 }

2314

2315 function swapAndLiquify(uint256 tokens) private {

2316

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 2330

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

2329 addLiquidity(otherHalf, newBalance);

2330 AmountLiquidityFee = AmountLiquidityFee - tokens;

2331 emit SwapAndLiquify(half, newBalance, otherHalf);

2332 }

2333

2334

Rabbit Year | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 2386

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

2385 swapTokensForCake(tokens);

2386 AmountTokenRewardsFee = AmountTokenRewardsFee - tokens;

2387 uint256 dividends = IERC20(rewardToken).balanceOf(address(this));

2388 bool success = IERC20(rewardToken).transfer(address(dividendTracker), dividends);

2389 if (success) {

2390

Rabbit Year | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 931

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BABYTOKEN.sol

Locations

930 uint256 index = map.indexOf[key];

931 uint256 lastIndex = map.keys.length - 1;

932 address lastKey = map.keys[lastIndex];

933

934 map.indexOf[lastKey] = index;

935

Rabbit Year | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 10

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BABYTOKEN.sol

Locations

9 // SPDX-License-Identifier: MIT

10 pragma solidity ^0.8.0;

11

12 abstract contract Context {

13 function _msgSender() internal view virtual returns (address) {

14

Rabbit Year | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 2165

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- BABYTOKEN.sol

Locations

2164 (uint256 iterations, uint256 claims, uint256 lastProcessedIndex) =

dividendTracker.process(gas);

2165 emit ProcessedDividendTracker(iterations, claims, lastProcessedIndex, false, gas,

tx.origin);

2166 }

2167

2168 function claim() external {

2169

Rabbit Year | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 2299

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- BABYTOKEN.sol

Locations

2298 try dividendTracker.process(gas) returns (uint256 iterations, uint256 claims,

uint256 lastProcessedIndex) {

2299 emit ProcessedDividendTracker(iterations, claims, lastProcessedIndex, true, gas,

tx.origin);

2300 }

2301 catch {

2302

2303

Rabbit Year | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 900

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BABYTOKEN.sol

Locations

899 {

900 return map.keys[index];

901 }

902

903 function size(Map storage map) public view returns (uint256) {

904

Rabbit Year | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 932

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BABYTOKEN.sol

Locations

931 uint256 lastIndex = map.keys.length - 1;

932 address lastKey = map.keys[lastIndex];

933

934 map.indexOf[lastKey] = index;

935 delete map.indexOf[key];

936

Rabbit Year | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 937

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BABYTOKEN.sol

Locations

936

937 map.keys[index] = lastKey;

938 map.keys.pop();

939 }

940 }

941

Rabbit Year | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1854

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BABYTOKEN.sol

Locations

1853

1854 address account = tokenHoldersMap.keys[_lastProcessedIndex];

1855

1856 if (canAutoClaim(lastClaimTimes[account])) {

1857 if (processAccount(payable(account), true)) {

1858

Rabbit Year | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1974

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BABYTOKEN.sol

Locations

1973) payable ERC20(name_, symbol_) {

1974 rewardToken = addrs[0];

1975 _marketingWalletAddress = addrs[2];

1976 _ContractAddress =addrs[4];

1977

1978

Rabbit Year | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1975

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BABYTOKEN.sol

Locations

1974 rewardToken = addrs[0];

1975 _marketingWalletAddress = addrs[2];

1976 _ContractAddress =addrs[4];

1977

1978 buyTokenRewardsFee = buyFeeSetting_[0];

1979

Rabbit Year | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1976

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BABYTOKEN.sol

Locations

1975 _marketingWalletAddress = addrs[2];

1976 _ContractAddress =addrs[4];

1977

1978 buyTokenRewardsFee = buyFeeSetting_[0];

1979 buyLiquidityFee = buyFeeSetting_[1];

1980

Rabbit Year | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1978

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BABYTOKEN.sol

Locations

1977

1978 buyTokenRewardsFee = buyFeeSetting_[0];

1979 buyLiquidityFee = buyFeeSetting_[1];

1980 buyMarketingFee = buyFeeSetting_[2];

1981 buyDeadFee = buyFeeSetting_[3];

1982

Rabbit Year | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1979

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BABYTOKEN.sol

Locations

1978 buyTokenRewardsFee = buyFeeSetting_[0];

1979 buyLiquidityFee = buyFeeSetting_[1];

1980 buyMarketingFee = buyFeeSetting_[2];

1981 buyDeadFee = buyFeeSetting_[3];

1982

1983

Rabbit Year | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1980

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BABYTOKEN.sol

Locations

1979 buyLiquidityFee = buyFeeSetting_[1];

1980 buyMarketingFee = buyFeeSetting_[2];

1981 buyDeadFee = buyFeeSetting_[3];

1982

1983 sellTokenRewardsFee = sellFeeSetting_[0];

1984

Rabbit Year | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1981

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BABYTOKEN.sol

Locations

1980 buyMarketingFee = buyFeeSetting_[2];

1981 buyDeadFee = buyFeeSetting_[3];

1982

1983 sellTokenRewardsFee = sellFeeSetting_[0];

1984 sellLiquidityFee = sellFeeSetting_[1];

1985

Rabbit Year | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1983

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BABYTOKEN.sol

Locations

1982

1983 sellTokenRewardsFee = sellFeeSetting_[0];

1984 sellLiquidityFee = sellFeeSetting_[1];

1985 sellMarketingFee = sellFeeSetting_[2];

1986 sellDeadFee = sellFeeSetting_[3];

1987

Rabbit Year | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1984

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BABYTOKEN.sol

Locations

1983 sellTokenRewardsFee = sellFeeSetting_[0];

1984 sellLiquidityFee = sellFeeSetting_[1];

1985 sellMarketingFee = sellFeeSetting_[2];

1986 sellDeadFee = sellFeeSetting_[3];

1987

1988

Rabbit Year | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1985

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BABYTOKEN.sol

Locations

1984 sellLiquidityFee = sellFeeSetting_[1];

1985 sellMarketingFee = sellFeeSetting_[2];

1986 sellDeadFee = sellFeeSetting_[3];

1987

1988

require(buyTokenRewardsFee.add(buyLiquidityFee).add(buyMarketingFee).add(buyDeadFee) <=

25, "Total buy fee is over 25%");

1989

Rabbit Year | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1986

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BABYTOKEN.sol

Locations

1985 sellMarketingFee = sellFeeSetting_[2];

1986 sellDeadFee = sellFeeSetting_[3];

1987

1988

require(buyTokenRewardsFee.add(buyLiquidityFee).add(buyMarketingFee).add(buyDeadFee) <=

25, "Total buy fee is over 25%");

1989

require(sellTokenRewardsFee.add(sellLiquidityFee).add(sellMarketingFee).add(sellDeadFee)

<= 25, "Total sell fee is over 25%");

1990

Rabbit Year | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1998

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BABYTOKEN.sol

Locations

1997 dividendTracker = BABYTOKENDividendTracker(

1998 payable(Clones.clone(addrs[3]))

1999);

2000

2001 dividendTracker.initialize(

2002

Rabbit Year | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2006

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BABYTOKEN.sol

Locations

2005

2006 IUniswapV2Router02 _uniswapV2Router = IUniswapV2Router02(addrs[1]);

2007 address _uniswapV2Pair = IUniswapV2Factory(_uniswapV2Router.factory())

2008 .createPair(address(this), _uniswapV2Router.WETH());

2009

2010

Rabbit Year | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2041

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BABYTOKEN.sol

Locations

2040 for (uint256 i = 0; i < accounts.length; i++) {

2041 _isBlacklisted[accounts[i]] = excluded;

2042 }

2043 }

2044

2045

Rabbit Year | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2072

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BABYTOKEN.sol

Locations

2071 for(uint256 i = 0; i < accounts.length; i++) {

2072 _isExcludedFromFees[accounts[i]] = excluded;

2073 }

2074

2075 emit ExcludeMultipleAccountsFromFees(accounts, excluded);

2076

Rabbit Year | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2337

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BABYTOKEN.sol

Locations

2336 address[] memory path = new address[](2);

2337 path[0] = address(this);

2338 path[1] = uniswapV2Router.WETH();

2339

2340 _approve(address(this), address(uniswapV2Router), tokenAmount);

2341

Rabbit Year | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2338

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BABYTOKEN.sol

Locations

2337 path[0] = address(this);

2338 path[1] = uniswapV2Router.WETH();

2339

2340 _approve(address(this), address(uniswapV2Router), tokenAmount);

2341

2342

Rabbit Year | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2355

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BABYTOKEN.sol

Locations

2354 address[] memory path = new address[](3);

2355 path[0] = address(this);

2356 path[1] = uniswapV2Router.WETH();

2357 path[2] = rewardToken;

2358 _approve(address(this), address(uniswapV2Router), tokenAmount);

2359

Rabbit Year | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2356

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BABYTOKEN.sol

Locations

2355 path[0] = address(this);

2356 path[1] = uniswapV2Router.WETH();

2357 path[2] = rewardToken;

2358 _approve(address(this), address(uniswapV2Router), tokenAmount);

2359 // make the swap

2360

Rabbit Year | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2357

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BABYTOKEN.sol

Locations

2356 path[1] = uniswapV2Router.WETH();

2357 path[2] = rewardToken;

2358 _approve(address(this), address(uniswapV2Router), tokenAmount);

2359 // make the swap

2360 uniswapV2Router.swapExactTokensForTokensSupportingFeeOnTransferTokens(

2361

Rabbit Year | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Rabbit Year | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

