
Safe Haven Token

Smart Contract
Audit Report

05 May 2022

Safe Haven Token | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Safe Haven Token | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Safe Haven Token SHA Polygon Matic

| Addresses

Contract address 0x534f39c5f4df9cb13e16b24ca07c7c8c0e2eadb7

Contract deployer address 0x1bde1Bae878131B919ce8316619C8409f2624E5f

| Project Website

https://safehaven.io/

| Codebase

https://polygonscan.com/address/0x534f39c5f4df9cb13e16b24ca07c7c8c0e2eadb7#code

https://safehaven.io/
https://polygonscan.com/address/0x534f39c5f4df9cb13e16b24ca07c7c8c0e2eadb7#code

Safe Haven Token | Security Analysis

SUMMARY

Established in 2017, Safe Haven aims to provide advanced FinTech solutions powered by blockchain. However,
unlike many others, our solutions are patented globally, and we take the time to do things right. Focusing on
security, we provide decentralized financial, backup, inheritance, and data transfer products for individual
consumers and established organizations.

| Contract Summary

Documentation Quality

Safe Haven Token provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Safe Haven Token with the discovery of
several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 81, 84 and 87.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 5.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 534, 515 and 274.
SWC-111 | It is recommended to use alternatives to the deprecated constructions on lines 220, 256, 286,
299, 324, 444 and 494.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 129, 185, 192,
208, 221, 287, 367, 481 and 483.

Safe Haven Token | Security Analysis

CONCLUSION

We have audited the Safe Haven Token project released in May 2022 to discover issues and identify potential
security vulnerabilities in Safe Haven Token Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the Safe Haven Token smart contract code do not pose a considerable risk. The writing of
the contract is close to the standard of writing contracts in general. The low-risk issues found are that a
floating pragma is set, a state variable visibility is not set, the potential use of "block.number" as a source of
randomness, the "constant" state mutability modifier is deprecated, and the requirement violation. It is
recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between
builds. This is especially important if you rely on bytecode-level verification of the code. A requirement was
violated in a nested call and the call was reverted as a result. Make sure valid inputs are provided to the nested
call (for instance, via passed arguments). Using "constant" as a state mutability modifier in function
"getValueAt" is disallowed as of Solidity version 0.5.0. Use "view" instead.

Safe Haven Token | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

PASS

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used.
ISSUE

FOUND

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Safe Haven Token | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Safe Haven Token | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Safe Haven Token | Security Analysis

SMART CONTRACT ANALYSIS

Started Wednesday May 04 2022 10:55:46 GMT+0000 (Coordinated Universal Time)

Finished Thursday May 05 2022 17:12:28 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File SafeHavenToken.sol

| Detected Issues

ID Title Severity Status

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-123 REQUIREMENT VIOLATION. low acknowledged

SWC-123 REQUIREMENT VIOLATION. low acknowledged

SWC-123 REQUIREMENT VIOLATION. low acknowledged

Safe Haven Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 5

low SEVERITY
The current pragma Solidity directive is ""^0.4.24"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- SafeHavenToken.sol

Locations

4

5 pragma solidity ^0.4.24;

6

7 // Safe Haven Token Sale

8 //

9

Safe Haven Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 81

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "balances" is internal.
Other possible visibility settings are public and private.

Source File
- SafeHavenToken.sol

Locations

80 // occurred is also included in the map

81 mapping (address => Checkpoint[]) balances;

82

83 // `allowed` tracks any extra transfer rights as in all ERC20 tokens

84 mapping (address => mapping (address => uint256)) allowed;

85

Safe Haven Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 84

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "allowed" is internal.
Other possible visibility settings are public and private.

Source File
- SafeHavenToken.sol

Locations

83 // `allowed` tracks any extra transfer rights as in all ERC20 tokens

84 mapping (address => mapping (address => uint256)) allowed;

85

86 // Tracks the history of the `totalSupply` of the token

87 Checkpoint[] totalSupplyHistory;

88

Safe Haven Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 87

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "totalSupplyHistory" is
internal. Other possible visibility settings are public and private.

Source File
- SafeHavenToken.sol

Locations

86 // Tracks the history of the `totalSupply` of the token

87 Checkpoint[] totalSupplyHistory;

88

89 // Flag that determines if the token is transferable or not.

90 bool public transfersEnabled;

91

Safe Haven Token | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 220

low SEVERITY
Using "constant" as a state mutability modifier in function "balanceOf" is disallowed as of Solidity version 0.5.0.
Use "view" instead.

Source File
- SafeHavenToken.sol

Locations

219 /// @return The balance of `_owner` at the current block

220 function balanceOf(address _owner) public constant returns (uint256 balance) {

221 return balanceOfAt(_owner, block.number);

222 }

223

224

Safe Haven Token | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 256

low SEVERITY
Using "constant" as a state mutability modifier in function "allowance" is disallowed as of Solidity version 0.5.0.
Use "view" instead.

Source File
- SafeHavenToken.sol

Locations

255 /// to spend

256 function allowance(address _owner, address _spender

257) public constant returns (uint256 remaining)

258 {

259 return allowed[_owner][_spender];

260

Safe Haven Token | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 286

low SEVERITY
Using "constant" as a state mutability modifier in function "totalSupply" is disallowed as of Solidity version
0.5.0. Use "view" instead.

Source File
- SafeHavenToken.sol

Locations

285 /// @return The total number of tokens

286 function totalSupply() public constant returns (uint) {

287 return totalSupplyAt(block.number);

288 }

289

290

Safe Haven Token | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 299

low SEVERITY
Using "constant" as a state mutability modifier in function "balanceOfAt" is disallowed as of Solidity version
0.5.0. Use "view" instead.

Source File
- SafeHavenToken.sol

Locations

298 /// @return The balance at `_blockNumber`

299 function balanceOfAt(address _owner, uint _blockNumber) public constant

300 returns (uint)

301 {

302 // These next few lines are used when the balance of the token is

303

Safe Haven Token | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 324

low SEVERITY
Using "constant" as a state mutability modifier in function "totalSupplyAt" is disallowed as of Solidity version
0.5.0. Use "view" instead.

Source File
- SafeHavenToken.sol

Locations

323 /// @return The total amount of tokens at `_blockNumber`

324 function totalSupplyAt(uint _blockNumber) public constant returns(uint) {

325

326 // These next few lines are used when the totalSupply of the token is

327 // requested before a check point was ever created for this token, it

328

Safe Haven Token | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 444

low SEVERITY
Using "constant" as a state mutability modifier in function "getValueAt" is disallowed as of Solidity version
0.5.0. Use "view" instead.

Source File
- SafeHavenToken.sol

Locations

443 /// @return The number of tokens being queried

444 function getValueAt(Checkpoint[] storage checkpoints, uint _block)

445 constant internal returns (uint)

446 {

447 if (checkpoints.length == 0) {

448

Safe Haven Token | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 494

low SEVERITY
Using "constant" as a state mutability modifier in function "isContract" is disallowed as of Solidity version
0.5.0. Use "view" instead.

Source File
- SafeHavenToken.sol

Locations

493 /// @return True if `_addr` is a contract

494 function isContract(address _addr) constant internal returns(bool) {

495 uint size;

496 if (_addr == 0) {

497 return false;

498

Safe Haven Token | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 129

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- SafeHavenToken.sol

Locations

128 transfersEnabled = _transfersEnabled;

129 creationBlock = block.number;

130 }

131

132

133

Safe Haven Token | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 185

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- SafeHavenToken.sol

Locations

184

185 require(parentSnapShotBlock < block.number);

186

187 // Do not allow transfer to 0x0 or the token contract itself

188 require((_to != 0) && (_to != address(this)));

189

Safe Haven Token | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 192

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- SafeHavenToken.sol

Locations

191 // account the transfer returns false

192 uint256 previousBalanceFrom = balanceOfAt(_from, block.number);

193 if (previousBalanceFrom < _amount) {

194 return false;

195 }

196

Safe Haven Token | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 208

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- SafeHavenToken.sol

Locations

207 // receiving the tokens

208 uint256 previousBalanceTo = balanceOfAt(_to, block.number);

209 require(previousBalanceTo + _amount >= previousBalanceTo); // Check for overflow

210 updateValueAtNow(balances[_to], previousBalanceTo + _amount);

211

212

Safe Haven Token | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 221

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- SafeHavenToken.sol

Locations

220 function balanceOf(address _owner) public constant returns (uint256 balance) {

221 return balanceOfAt(_owner, block.number);

222 }

223

224 /// @notice `msg.sender` approves `_spender` to spend `_amount` tokens on

225

Safe Haven Token | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 287

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- SafeHavenToken.sol

Locations

286 function totalSupply() public constant returns (uint) {

287 return totalSupplyAt(block.number);

288 }

289

290

291

Safe Haven Token | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 367

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- SafeHavenToken.sol

Locations

366 if (_snapshotBlock == 0) {

367 _snapshotBlock = block.number;

368 }

369

370 MiniMeToken cloneToken = tokenFactory.createCloneToken(

371

Safe Haven Token | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 481

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- SafeHavenToken.sol

Locations

480 {

481 if ((checkpoints.length == 0) || (checkpoints[checkpoints.length-1].fromBlock <

block.number)) {

482 Checkpoint storage newCheckPoint = checkpoints[checkpoints.length++];

483 newCheckPoint.fromBlock = uint128(block.number);

484 newCheckPoint.value = uint128(_value);

485

Safe Haven Token | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 483

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- SafeHavenToken.sol

Locations

482 Checkpoint storage newCheckPoint = checkpoints[checkpoints.length++];

483 newCheckPoint.fromBlock = uint128(block.number);

484 newCheckPoint.value = uint128(_value);

485 } else {

486 Checkpoint storage oldCheckPoint = checkpoints[checkpoints.length-1];

487

Safe Haven Token | Security Analysis

SWC-123 | REQUIREMENT VIOLATION.
LINE 534

low SEVERITY
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are
provided to the nested call (for instance, via passed arguments).

Source File
- SafeHavenToken.sol

Locations

533 uint balance = token.balanceOf(this);

534 token.transfer(controller, balance);

535 emit ClaimedTokens(_token, controller, balance);

536 }

537

538

Safe Haven Token | Security Analysis

SWC-123 | REQUIREMENT VIOLATION.
LINE 515

low SEVERITY
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are
provided to the nested call (for instance, via passed arguments).

Source File
- SafeHavenToken.sol

Locations

514 require(isContract(controller));

515 require(TokenController(controller).proxyPayment.value(msg.value)(msg.sender));

516 }

517

518 //////////

519

Safe Haven Token | Security Analysis

SWC-123 | REQUIREMENT VIOLATION.
LINE 274

low SEVERITY
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are
provided to the nested call (for instance, via passed arguments).

Source File
- SafeHavenToken.sol

Locations

273

274 ApproveAndCallFallBack(_spender).receiveApproval(

275 msg.sender,

276 _amount,

277 this,

278

Safe Haven Token | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Safe Haven Token | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

