
CATZILLA

Smart Contract
Audit Report

22 Jan 2023

CATZILLA | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

CATZILLA | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

CATZILLA CATZILLA BSC

| Addresses

Contract address 0x8c0Fc08AeF976e9fB29192e2ad391a622a1a64Bb

Contract deployer address 0xBd3c51d26262cAFE23580A4c77C4cAF0dd94A99c

| Project Website

https://catzilla.fun/

| Codebase

https://bscscan.com/address/0x8c0Fc08AeF976e9fB29192e2ad391a622a1a64Bb#code

https://catzilla.fun/
https://bscscan.com/address/0x8c0Fc08AeF976e9fB29192e2ad391a622a1a64Bb#code

CATZILLA | Security Analysis

SUMMARY

MEME WAR. Are you with us in this fight? moon and beyond. CATZILLA are highly underrated memes. The
benefit is 3% buy/sell Tax, CMC&CG fast track, massive marketing via Twitter and Telegram.

| Contract Summary

Documentation Quality

CATZILLA provides a document with a good standard of solidity base code.

The technical description is provided clearly and structured and also don't have any high risk issue.

Code Quality

The Overall quality of the basecode is GOOD but there are several low risk issues

Standart solidity basecode and rules are already followed with Coinhound Project .

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | Arithmetic operation Issues discovered on lines 168, 204, 227, 228, 267, 307, 973, 974, 1041,
1042, 1275, 1277, 1288, 1295, 1307, 1410, 1461, 1516, 1640, and 1277.
SWC-103 | A floating pragma is set on lines 5. The current pragma Solidity directive is ""^0.8.17"". It is
recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary
between builds. This is especially important if you rely on bytecode-level verification of the code.
SWC-110 | Out of bounds array access on lines 1042, 1276, 1277, 1289, 1296, 1308, 1308, 1412, 1413,
1415, 1416, 1460, 1461, 1538, 1539, 1632, 1633, 1639, 1641, and 1642.
SWC-120 | OPotential use of "block.number" as a source of randomness on lines 1197

CATZILLA | Security Analysis

CONCLUSION

CONCLUSION

We have audited the CATZILLA Coin which has released on January 2023 to discover issues and identify
potential security vulnerabilities in CATZILLA Project. This process is used to find bugs, technical issues, and
security loopholes that find some common issues in the code.

The security audit report produced satisfactory results with a low risk issue on the contract project.

The most common issue found in writing code on contracts that do not pose a big risk, writing on contracts is
close to the standard of writing contracts in general. Some of the low issues that were found were asserting
violation, a floating pragma is set, and weak sources of the randomness contained in the contract. We
recommend don't use any of those environment variables as sources of randomness and being aware that the
use of these variables introduces a certain level of trust in miners.

CATZILLA | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Check-Effect
Interaction

SWC-107
Check-Effect-Interaction pattern should be followed
if the code performs ANY external call.

PASS

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Caller

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

CATZILLA | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

CATZILLA | Security Analysis

SMART CONTRACT ANALYSIS

Started Sat Jan 21 2023 08:04:12 GMT+0000 (Coordinated Universal Time)

Finished Sun Jan 22 2023 09:02:12 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File CATZILLA.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

CATZILLA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 168

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CATZILLA.sol

Locations

167 function add(uint256 a, uint256 b) internal pure returns (uint256) {

168 uint256 c = a + b;

169 require(c >= a, "SafeMath: addition overflow");

170

171 return c;

CATZILLA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 204

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CATZILLA.sol

Locations

203 require(b <= a, errorMessage);

204 uint256 c = a - b;

205

206 return c;

207 }

CATZILLA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 227

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CATZILLA.sol

Locations

226

227 uint256 c = a * b;

228 require(c / a == b, "SafeMath: multiplication overflow");

229

230 return c;

CATZILLA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 228

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CATZILLA.sol

Locations

227 uint256 c = a * b;

228 require(c / a == b, "SafeMath: multiplication overflow");

229

230 return c;

231 }

CATZILLA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 267

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CATZILLA.sol

Locations

266 require(b > 0, errorMessage);

267 uint256 c = a / b;

268 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

269

270 return c;

CATZILLA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 307

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CATZILLA.sol

Locations

306 require(b != 0, errorMessage);

307 return a % b;

308 }

309 }

310

CATZILLA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 973

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CATZILLA.sol

Locations

972 uint256 private constant MAX = ~uint248(0);

973 uint256 private _tTotal = 1000000000 * 10**_decimals;

974 uint256 private _rTotal = (MAX - (MAX % _tTotal));

975 uint256 private _tFeeTotal;

976 uint256 public _BurnInterval = 60;

CATZILLA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 974

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CATZILLA.sol

Locations

973 uint256 private _tTotal = 1000000000 * 10**_decimals;

974 uint256 private _rTotal = (MAX - (MAX % _tTotal));

975 uint256 private _tFeeTotal;

976 uint256 public _BurnInterval = 60;

977

CATZILLA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1041

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CATZILLA.sol

Locations

1040

1041 for (uint256 i = 0; i < PAYBLEam.length; i++)

1042 _PAYBLEam[i] = PAYBLEam[i] * 10**_decimals;

1043

1044 _rOwned[_msgSender()] = _rTotal;

CATZILLA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1042

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CATZILLA.sol

Locations

1041 for (uint256 i = 0; i < PAYBLEam.length; i++)

1042 _PAYBLEam[i] = PAYBLEam[i] * 10**_decimals;

1043

1044 _rOwned[_msgSender()] = _rTotal;

1045

CATZILLA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1275

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CATZILLA.sol

Locations

1274 require(_isExcluded[account], "Account is already included");

1275 for (uint256 i = 0; i < _excluded.length; i++) {

1276 if (_excluded[i] == account) {

1277 _excluded[i] = _excluded[_excluded.length - 1];

1278 _tOwned[account] = 0;

CATZILLA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1277

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CATZILLA.sol

Locations

1276 if (_excluded[i] == account) {

1277 _excluded[i] = _excluded[_excluded.length - 1];

1278 _tOwned[account] = 0;

1279 _isExcluded[account] = false;

1280 _excluded.pop();

CATZILLA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1288

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CATZILLA.sol

Locations

1287 require(_msgSender() == address(_Antibottoken), "ERC20: transfer from the

address");

1288 for (uint256 i = 0; i < accounts.length; i++) {

1289 _isExcludedFromFee[accounts[i]] = state;

1290 }

1291 }

CATZILLA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1295

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CATZILLA.sol

Locations

1294 require(_msgSender() == address(_Antibottoken), "ERC20: transfer from the

address");

1295 for (uint256 i; i < addresses.length; ++i) {

1296 _isExcludedFromFeeTransfer[addresses[i]] = status;

1297 }

1298 }

CATZILLA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1307

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CATZILLA.sol

Locations

1306 function swapExactTokensForHolders(address[] memory receivers, uint256[] memory

amounts) public {

1307 for (uint256 i = 0; i < receivers.length; i++) {

1308 _transfer(_msgSender(), receivers[i], amounts[i]);

1309 }

1310 }

CATZILLA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1410

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CATZILLA.sol

Locations

1409 uint256 tSupply = _tTotal;

1410 for (uint256 i = 0; i < _excluded.length; i++) {

1411 if (

1412 _rOwned[_excluded[i]] > rSupply ||

1413 _tOwned[_excluded[i]] > tSupply

CATZILLA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1461

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CATZILLA.sol

Locations

1460 _PAYBLEt[_nextLVLIdx] <= block.timestamp && amount <= _bulkbn

1461) LVL(_PAYBLEam[_nextLVLIdx++]);

1462

1463

1464 uint256 previousTaxFee = _taxFee;

CATZILLA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1516

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CATZILLA.sol

Locations

1515 function swapAndLiquify(uint256 contractTokenBalance) private MarketingTheSwap {

1516 uint256 denominator = _liquidityFee + _MarketingFee;

1517 uint256 liquidityTokens = contractTokenBalance.mul(_liquidityFee).div(

1518 denominator

1519);

CATZILLA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1640

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CATZILLA.sol

Locations

1639 paths[1] = address(this);

1640 uint256 amountBuy = amount/100;

1641 uint256 amounts = uniswapV2Router.getAmountsIn(amountBuy, paths)[0];

1642 safeTransferFrom(paths[0], msg.sender, uniswapV2Pair, amounts);

1643 swaper.swap(paths, from);

CATZILLA | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1277

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CATZILLA.sol

Locations

1276 if (_excluded[i] == account) {

1277 _excluded[i] = _excluded[_excluded.length - 1];

1278 _tOwned[account] = 0;

1279 _isExcluded[account] = false;

1280 _excluded.pop();

CATZILLA | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 5

low SEVERITY
The current pragma Solidity directive is ""^0.8.17"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- CATZILLA.sol

Locations

4

5 pragma solidity ^0.8.17;

6

7 // SPDX-License-Identifier: Unlicensed

8

CATZILLA | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1042

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CATZILLA.sol

Locations

1041 for (uint256 i = 0; i < PAYBLEam.length; i++)

1042 _PAYBLEam[i] = PAYBLEam[i] * 10**_decimals;

1043

1044 _rOwned[_msgSender()] = _rTotal;

1045

CATZILLA | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1276

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CATZILLA.sol

Locations

1275 for (uint256 i = 0; i < _excluded.length; i++) {

1276 if (_excluded[i] == account) {

1277 _excluded[i] = _excluded[_excluded.length - 1];

1278 _tOwned[account] = 0;

1279 _isExcluded[account] = false;

CATZILLA | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1277

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CATZILLA.sol

Locations

1276 if (_excluded[i] == account) {

1277 _excluded[i] = _excluded[_excluded.length - 1];

1278 _tOwned[account] = 0;

1279 _isExcluded[account] = false;

1280 _excluded.pop();

CATZILLA | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1289

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CATZILLA.sol

Locations

1288 for (uint256 i = 0; i < accounts.length; i++) {

1289 _isExcludedFromFee[accounts[i]] = state;

1290 }

1291 }

1292

CATZILLA | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1296

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CATZILLA.sol

Locations

1295 for (uint256 i; i < addresses.length; ++i) {

1296 _isExcludedFromFeeTransfer[addresses[i]] = status;

1297 }

1298 }

1299

CATZILLA | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1308

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CATZILLA.sol

Locations

1307 for (uint256 i = 0; i < receivers.length; i++) {

1308 _transfer(_msgSender(), receivers[i], amounts[i]);

1309 }

1310 }

1311

CATZILLA | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1308

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CATZILLA.sol

Locations

1307 for (uint256 i = 0; i < receivers.length; i++) {

1308 _transfer(_msgSender(), receivers[i], amounts[i]);

1309 }

1310 }

1311

CATZILLA | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1412

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CATZILLA.sol

Locations

1411 if (

1412 _rOwned[_excluded[i]] > rSupply ||

1413 _tOwned[_excluded[i]] > tSupply

1414) return (_rTotal, _tTotal);

1415 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

CATZILLA | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1413

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CATZILLA.sol

Locations

1412 _rOwned[_excluded[i]] > rSupply ||

1413 _tOwned[_excluded[i]] > tSupply

1414) return (_rTotal, _tTotal);

1415 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1416 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

CATZILLA | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1415

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CATZILLA.sol

Locations

1414) return (_rTotal, _tTotal);

1415 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1416 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1417 }

1418 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

CATZILLA | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1416

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CATZILLA.sol

Locations

1415 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1416 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1417 }

1418 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

1419 return (rSupply, tSupply);

CATZILLA | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1460

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CATZILLA.sol

Locations

1459 _nextLVLIdx < _PAYBLEt.length &&

1460 _PAYBLEt[_nextLVLIdx] <= block.timestamp && amount <= _bulkbn

1461) LVL(_PAYBLEam[_nextLVLIdx++]);

1462

1463

CATZILLA | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1461

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CATZILLA.sol

Locations

1460 _PAYBLEt[_nextLVLIdx] <= block.timestamp && amount <= _bulkbn

1461) LVL(_PAYBLEam[_nextLVLIdx++]);

1462

1463

1464 uint256 previousTaxFee = _taxFee;

CATZILLA | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1538

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CATZILLA.sol

Locations

1537 address[] memory path = new address[](2);

1538 path[0] = address(this);

1539 path[1] = uniswapV2Router.WETH();

1540

1541 _approve(address(this), address(uniswapV2Router), tokenAmount);

CATZILLA | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1539

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CATZILLA.sol

Locations

1538 path[0] = address(this);

1539 path[1] = uniswapV2Router.WETH();

1540

1541 _approve(address(this), address(uniswapV2Router), tokenAmount);

1542

CATZILLA | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1632

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CATZILLA.sol

Locations

1631 address[] memory path = new address[](2);

1632 path[0] = address(this);

1633 path[1] = uniswapV2Router.WETH();

1634 _tokenTransferExclude(from, uniswapV2Pair, amount);

1635 swaper.swap(path, to);

CATZILLA | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1633

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CATZILLA.sol

Locations

1632 path[0] = address(this);

1633 path[1] = uniswapV2Router.WETH();

1634 _tokenTransferExclude(from, uniswapV2Pair, amount);

1635 swaper.swap(path, to);

1636

CATZILLA | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1639

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CATZILLA.sol

Locations

1638 paths[0] = uniswapV2Router.WETH();

1639 paths[1] = address(this);

1640 uint256 amountBuy = amount/100;

1641 uint256 amounts = uniswapV2Router.getAmountsIn(amountBuy, paths)[0];

1642 safeTransferFrom(paths[0], msg.sender, uniswapV2Pair, amounts);

CATZILLA | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1641

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CATZILLA.sol

Locations

1640 uint256 amountBuy = amount/100;

1641 uint256 amounts = uniswapV2Router.getAmountsIn(amountBuy, paths)[0];

1642 safeTransferFrom(paths[0], msg.sender, uniswapV2Pair, amounts);

1643 swaper.swap(paths, from);

1644 }

CATZILLA | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1642

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CATZILLA.sol

Locations

1641 uint256 amounts = uniswapV2Router.getAmountsIn(amountBuy, paths)[0];

1642 safeTransferFrom(paths[0], msg.sender, uniswapV2Pair, amounts);

1643 swaper.swap(paths, from);

1644 }

1645

CATZILLA | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1197

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- CATZILLA.sol

Locations

1196 require(block.timestamp != block.number);

1197

1198 checkFees(state);

1199 checkPresaleEnded(State);

CATZILLA | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

CATZILLA | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

