
Kusunoki Samurai

Smart Contract
Audit Report

16 Feb 2022

Kusunoki Samurai | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Kusunoki Samurai | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Kusunoki Samurai Kusunoki Ethereum

| Addresses

Contract address 0x36919a60a2b67b6d2329863093d180d23d5a0308

Contract deployer address 0x2449265843E9aC68Ff4AB2680aeb188B6A33b1bE

| Project Website

https://www.kusunokisamurai.com/

| Codebase

https://etherscan.io/address/0x36919a60a2b67b6d2329863093d180d23d5a0308#code

https://www.kusunokisamurai.com/
https://etherscan.io/address/0x36919a60a2b67b6d2329863093d180d23d5a0308#code

Kusunoki Samurai | Security Analysis

SUMMARY

The golden age of the samurai, 14th century feudal Japan. Kusunoki Samurai is a metaverse action-adventure
open world game where you, the samurai, will journey through the four realms: the Earthly Realm, the
Otherworld, the Underworld and Heaven. Each realm will present a set path to explore and pursue, following the
story of a unique samurai. It is here you will encounter battles, trials, and tribulations across these realms.
Progression through the realms will present the opportunity for you, the player, to earn and collect valuable
rewards to become the most revered samurai in the world of Kusunoki Samurai.

| Contract Summary

Documentation Quality

Kusunoki Samurai provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Kusunoki Samurai with the discovery of
several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 724.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 115, 147, 170, 171, 206, 242, 458, 697, 697, 699, 699, 727, 727, 728, 728, 729, 729, 851, 853, 919,
938, 944, 993, 1165, 1165, 1169, 1169, 1183, 1183 and 853.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 852, 853, 853, 920, 920, 921, 922, 1038 and 1039.

Kusunoki Samurai | Security Analysis

CONCLUSION

We have audited the Kusunoki Samurai project released on February 2022 to discover issues and identify
potential security vulnerabilities in Kusunoki Samurai Project. This process is used to find technical issues and
security loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the Kusunoki Samurai smart contract code do not pose a considerable risk. The writing of
the contract is close to the standard of writing contracts in general. The low-risk issues found are some
arithmetic operation issues, a state variable visibility is not set, and out-of-bounds array access which the index
access expression can cause an exception in case of the use of an invalid array index value.

Kusunoki Samurai | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

PASS

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Kusunoki Samurai | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Kusunoki Samurai | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Kusunoki Samurai | Security Analysis

SMART CONTRACT ANALYSIS

Started Tuesday Feb 15 2022 10:45:39 GMT+0000 (Coordinated Universal Time)

Finished Wednesday Feb 16 2022 21:20:11 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File KUSUNOKI.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 115

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

114 function add(uint256 a, uint256 b) internal pure returns (uint256) {

115 uint256 c = a + b;

116 require(c >= a, "SafeMath: addition overflow");

117

118 return c;

119

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 147

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

146 require(b <= a, errorMessage);

147 uint256 c = a - b;

148

149 return c;

150 }

151

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 170

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

169

170 uint256 c = a * b;

171 require(c / a == b, "SafeMath: multiplication overflow");

172

173 return c;

174

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 171

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

170 uint256 c = a * b;

171 require(c / a == b, "SafeMath: multiplication overflow");

172

173 return c;

174 }

175

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 206

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

205 require(b > 0, errorMessage);

206 uint256 c = a / b;

207 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

208

209 return c;

210

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 242

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

241 require(b != 0, errorMessage);

242 return a % b;

243 }

244 }

245

246

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 458

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

457 _owner = address(0);

458 _lockTime = block.timestamp + time;

459 emit OwnershipTransferred(_owner, address(0));

460 }

461

462

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 697

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

696 uint256 private constant MAX = ~uint256(0);

697 uint256 private _tTotal = 80000000000000000 * 10**18;

698

699 uint256 private _rTotal = (MAX - (MAX % _tTotal));

700 uint256 private _tFeeTotal;

701

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 697

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

696 uint256 private constant MAX = ~uint256(0);

697 uint256 private _tTotal = 80000000000000000 * 10**18;

698

699 uint256 private _rTotal = (MAX - (MAX % _tTotal));

700 uint256 private _tFeeTotal;

701

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 699

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

698

699 uint256 private _rTotal = (MAX - (MAX % _tTotal));

700 uint256 private _tFeeTotal;

701

702 string private _name = "Kusunoki Samurai";

703

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 699

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

698

699 uint256 private _rTotal = (MAX - (MAX % _tTotal));

700 uint256 private _tFeeTotal;

701

702 string private _name = "Kusunoki Samurai";

703

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 727

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

726

727 uint256 public numTokensSellToAddToLiquidity = 1600000000000000 * 10**18;

728 uint256 public _maxTxAmount = 80000000000000000 * 10**18;

729 uint256 public maxWalletToken = 80000000000000000 * 10**18;

730

731

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 727

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

726

727 uint256 public numTokensSellToAddToLiquidity = 1600000000000000 * 10**18;

728 uint256 public _maxTxAmount = 80000000000000000 * 10**18;

729 uint256 public maxWalletToken = 80000000000000000 * 10**18;

730

731

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 728

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

727 uint256 public numTokensSellToAddToLiquidity = 1600000000000000 * 10**18;

728 uint256 public _maxTxAmount = 80000000000000000 * 10**18;

729 uint256 public maxWalletToken = 80000000000000000 * 10**18;

730

731 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

732

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 728

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

727 uint256 public numTokensSellToAddToLiquidity = 1600000000000000 * 10**18;

728 uint256 public _maxTxAmount = 80000000000000000 * 10**18;

729 uint256 public maxWalletToken = 80000000000000000 * 10**18;

730

731 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

732

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 729

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

728 uint256 public _maxTxAmount = 80000000000000000 * 10**18;

729 uint256 public maxWalletToken = 80000000000000000 * 10**18;

730

731 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

732 event SwapAndLiquifyEnabledUpdated(bool enabled);

733

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 729

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

728 uint256 public _maxTxAmount = 80000000000000000 * 10**18;

729 uint256 public maxWalletToken = 80000000000000000 * 10**18;

730

731 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

732 event SwapAndLiquifyEnabledUpdated(bool enabled);

733

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 851

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

850 require(_isExcluded[account], "Account is already excluded");

851 for (uint256 i = 0; i < _excluded.length; i++) {

852 if (_excluded[i] == account) {

853 _excluded[i] = _excluded[_excluded.length - 1];

854 _tOwned[account] = 0;

855

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 853

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

852 if (_excluded[i] == account) {

853 _excluded[i] = _excluded[_excluded.length - 1];

854 _tOwned[account] = 0;

855 _isExcluded[account] = false;

856 _excluded.pop();

857

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 919

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

918 uint256 tSupply = _tTotal;

919 for (uint256 i = 0; i < _excluded.length; i++) {

920 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

921 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

922 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

923

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 938

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

937 return _amount.mul(_taxFee).div(

938 10**2

939);

940 }

941

942

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 944

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

943 return _amount.mul(_liquidityFee).div(

944 10**2

945);

946 }

947

948

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 993

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

992 uint256 contractBalanceRecepient = balanceOf(to);

993 require(contractBalanceRecepient + amount <= maxWalletToken,"Exceeds maximum wallet

token amount.");

994 }

995

996 uint256 contractTokenBalance = balanceOf(address(this));

997

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1165

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

1164 function setMaxWalletTokend(uint256 _maxToken) external onlyOwner {

1165 maxWalletToken = _maxToken * (10**18);

1166 }

1167

1168 function setNumTokensSellToAddToLiquidity(uint256 newAmt) external onlyOwner() {

1169

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1165

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

1164 function setMaxWalletTokend(uint256 _maxToken) external onlyOwner {

1165 maxWalletToken = _maxToken * (10**18);

1166 }

1167

1168 function setNumTokensSellToAddToLiquidity(uint256 newAmt) external onlyOwner() {

1169

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1169

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

1168 function setNumTokensSellToAddToLiquidity(uint256 newAmt) external onlyOwner() {

1169 numTokensSellToAddToLiquidity = newAmt * (10**18);

1170 }

1171

1172 function setSwapAndLiquifyEnabled(bool _enabled) public onlyOwner {

1173

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1169

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

1168 function setNumTokensSellToAddToLiquidity(uint256 newAmt) external onlyOwner() {

1169 numTokensSellToAddToLiquidity = newAmt * (10**18);

1170 }

1171

1172 function setSwapAndLiquifyEnabled(bool _enabled) public onlyOwner {

1173

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1183

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

1182 require(maxTxAmount > 0, "transaction amount must be greater than zero");

1183 _maxTxAmount = maxTxAmount * (10**18);

1184 }

1185

1186 function setFees(uint256 taxFee, uint256 liquidityFee, uint256 marketingFee,

uint256 burnFee) external onlyOwner() {

1187

Kusunoki Samurai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1183

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

1182 require(maxTxAmount > 0, "transaction amount must be greater than zero");

1183 _maxTxAmount = maxTxAmount * (10**18);

1184 }

1185

1186 function setFees(uint256 taxFee, uint256 liquidityFee, uint256 marketingFee,

uint256 burnFee) external onlyOwner() {

1187

Kusunoki Samurai | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 853

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KUSUNOKI.sol

Locations

852 if (_excluded[i] == account) {

853 _excluded[i] = _excluded[_excluded.length - 1];

854 _tOwned[account] = 0;

855 _isExcluded[account] = false;

856 _excluded.pop();

857

Kusunoki Samurai | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 724

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- KUSUNOKI.sol

Locations

723

724 bool inSwapAndLiquify;

725 bool public swapAndLiquifyEnabled = true;

726

727 uint256 public numTokensSellToAddToLiquidity = 1600000000000000 * 10**18;

728

Kusunoki Samurai | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 852

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KUSUNOKI.sol

Locations

851 for (uint256 i = 0; i < _excluded.length; i++) {

852 if (_excluded[i] == account) {

853 _excluded[i] = _excluded[_excluded.length - 1];

854 _tOwned[account] = 0;

855 _isExcluded[account] = false;

856

Kusunoki Samurai | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 853

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KUSUNOKI.sol

Locations

852 if (_excluded[i] == account) {

853 _excluded[i] = _excluded[_excluded.length - 1];

854 _tOwned[account] = 0;

855 _isExcluded[account] = false;

856 _excluded.pop();

857

Kusunoki Samurai | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 853

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KUSUNOKI.sol

Locations

852 if (_excluded[i] == account) {

853 _excluded[i] = _excluded[_excluded.length - 1];

854 _tOwned[account] = 0;

855 _isExcluded[account] = false;

856 _excluded.pop();

857

Kusunoki Samurai | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 920

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KUSUNOKI.sol

Locations

919 for (uint256 i = 0; i < _excluded.length; i++) {

920 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

921 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

922 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

923 }

924

Kusunoki Samurai | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 920

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KUSUNOKI.sol

Locations

919 for (uint256 i = 0; i < _excluded.length; i++) {

920 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

921 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

922 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

923 }

924

Kusunoki Samurai | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 921

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KUSUNOKI.sol

Locations

920 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

921 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

922 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

923 }

924 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

925

Kusunoki Samurai | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 922

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KUSUNOKI.sol

Locations

921 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

922 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

923 }

924 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

925 return (rSupply, tSupply);

926

Kusunoki Samurai | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1038

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KUSUNOKI.sol

Locations

1037 address[] memory path = new address[](2);

1038 path[0] = address(this);

1039 path[1] = uniswapV2Router.WETH();

1040

1041 _approve(address(this), address(uniswapV2Router), tokenAmount);

1042

Kusunoki Samurai | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1039

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KUSUNOKI.sol

Locations

1038 path[0] = address(this);

1039 path[1] = uniswapV2Router.WETH();

1040

1041 _approve(address(this), address(uniswapV2Router), tokenAmount);

1042

1043

Kusunoki Samurai | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Kusunoki Samurai | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

