
Nakamoto.Games

Smart Contract
Audit Report

12 Nov 2021

Nakamoto.Games | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Nakamoto.Games | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Nakamoto.Games NAKA Polygon Matic

| Addresses

Contract address 0x311434160d7537be358930def317afb606c0d737

Contract deployer address 0xB4675d1895d3D572c7B6A72bd0EbfbBF7ed5A4Eb

| Project Website

https://www.nakamoto.games/

| Codebase

https://polygonscan.com/address/0x311434160d7537be358930def317afb606c0d737#code

https://www.nakamoto.games/
https://polygonscan.com/address/0x311434160d7537be358930def317afb606c0d737#code

Nakamoto.Games | Security Analysis

SUMMARY

The NAKA Token is integral to the Nakamoto Games play-to-earn ecosystem. It gives players access to any of
the games within the ecosystem while also providing a system to reward the most skilful players.

| Contract Summary

Documentation Quality

Nakamoto.Games provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Nakamoto.Games with the discovery of
several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 327, 353, 383, 419, 421, 442, 443, 468, 470, 580, 617, 1589, 1590, 1594, 1595, 1595, 1596, 1611,
1625, 1625, 1628, 1628 and 1628.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 9, 100, 126,
150, 545, 588, 626, 880, 905, 938, 1031, 1063, 1093, 1279, 1355, 1378, 1402, 1465, 1568, 1639, 1875 and
1896.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 1595, 1626, 1627, 1629 and 1629.

Nakamoto.Games | Security Analysis

CONCLUSION

We have audited the Nakamoto.Games project released on November 2021 to discover issues and identify
potential security vulnerabilities in Nakamoto.Games Project. This process is used to find technical issues and
security loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the Nakamoto.Games smart contract codes do not pose a considerable risk. The writing of
the contract is close to the standard of writing contracts in general. The low-risk issues found are some
floating pragma is set. It is recommended to specify a fixed compiler version to ensure that the bytecode
produced does not vary between builds. This is especially important if you rely on bytecode-level verification of
the code.

Nakamoto.Games | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Nakamoto.Games | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Nakamoto.Games | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Nakamoto.Games | Security Analysis

SMART CONTRACT ANALYSIS

Started Thursday Nov 11 2021 07:04:58 GMT+0000 (Coordinated Universal Time)

Finished Friday Nov 12 2021 01:16:11 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File PowerfulERC20.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "--" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

Nakamoto.Games | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 327

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PowerfulERC20.sol

Locations

326 unchecked {

327 _approve(sender, _msgSender(), currentAllowance - amount);

328 }

329

330 return true;

331

Nakamoto.Games | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 353

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PowerfulERC20.sol

Locations

352 spender,

353 _allowances[_msgSender()][spender] + addedValue

354);

355 return true;

356 }

357

Nakamoto.Games | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 383

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PowerfulERC20.sol

Locations

382 unchecked {

383 _approve(_msgSender(), spender, currentAllowance - subtractedValue);

384 }

385

386 return true;

387

Nakamoto.Games | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 419

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PowerfulERC20.sol

Locations

418 unchecked {

419 _balances[sender] = senderBalance - amount;

420 }

421 _balances[recipient] += amount;

422

423

Nakamoto.Games | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 421

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PowerfulERC20.sol

Locations

420 }

421 _balances[recipient] += amount;

422

423 emit Transfer(sender, recipient, amount);

424

425

Nakamoto.Games | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 442

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PowerfulERC20.sol

Locations

441

442 _totalSupply += amount;

443 _balances[account] += amount;

444 emit Transfer(address(0), account, amount);

445

446

Nakamoto.Games | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 443

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PowerfulERC20.sol

Locations

442 _totalSupply += amount;

443 _balances[account] += amount;

444 emit Transfer(address(0), account, amount);

445

446 _afterTokenTransfer(address(0), account, amount);

447

Nakamoto.Games | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 468

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PowerfulERC20.sol

Locations

467 unchecked {

468 _balances[account] = accountBalance - amount;

469 }

470 _totalSupply -= amount;

471

472

Nakamoto.Games | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 470

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PowerfulERC20.sol

Locations

469 }

470 _totalSupply -= amount;

471

472 emit Transfer(account, address(0), amount);

473

474

Nakamoto.Games | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 580

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PowerfulERC20.sol

Locations

579 unchecked {

580 _approve(account, _msgSender(), currentAllowance - amount);

581 }

582 _burn(account, amount);

583 }

584

Nakamoto.Games | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 617

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PowerfulERC20.sol

Locations

616 require(

617 ERC20.totalSupply() + amount <= cap(),

618 "ERC20Capped: cap exceeded"

619);

620 super._mint(account, amount);

621

Nakamoto.Games | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1589

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PowerfulERC20.sol

Locations

1588 while (temp != 0) {

1589 digits++;

1590 temp /= 10;

1591 }

1592 bytes memory buffer = new bytes(digits);

1593

Nakamoto.Games | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/=" DISCOVERED
LINE 1590

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PowerfulERC20.sol

Locations

1589 digits++;

1590 temp /= 10;

1591 }

1592 bytes memory buffer = new bytes(digits);

1593 while (value != 0) {

1594

Nakamoto.Games | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 1594

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PowerfulERC20.sol

Locations

1593 while (value != 0) {

1594 digits -= 1;

1595 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

1596 value /= 10;

1597 }

1598

Nakamoto.Games | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1595

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PowerfulERC20.sol

Locations

1594 digits -= 1;

1595 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

1596 value /= 10;

1597 }

1598 return string(buffer);

1599

Nakamoto.Games | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 1595

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PowerfulERC20.sol

Locations

1594 digits -= 1;

1595 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

1596 value /= 10;

1597 }

1598 return string(buffer);

1599

Nakamoto.Games | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/=" DISCOVERED
LINE 1596

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PowerfulERC20.sol

Locations

1595 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

1596 value /= 10;

1597 }

1598 return string(buffer);

1599 }

1600

Nakamoto.Games | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1611

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PowerfulERC20.sol

Locations

1610 while (temp != 0) {

1611 length++;

1612 temp >>= 8;

1613 }

1614 return toHexString(value, length);

1615

Nakamoto.Games | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1625

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PowerfulERC20.sol

Locations

1624 {

1625 bytes memory buffer = new bytes(2 * length + 2);

1626 buffer[0] = "0";

1627 buffer[1] = "x";

1628 for (uint256 i = 2 * length + 1; i > 1; --i) {

1629

Nakamoto.Games | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1625

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PowerfulERC20.sol

Locations

1624 {

1625 bytes memory buffer = new bytes(2 * length + 2);

1626 buffer[0] = "0";

1627 buffer[1] = "x";

1628 for (uint256 i = 2 * length + 1; i > 1; --i) {

1629

Nakamoto.Games | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1628

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PowerfulERC20.sol

Locations

1627 buffer[1] = "x";

1628 for (uint256 i = 2 * length + 1; i > 1; --i) {

1629 buffer[i] = _HEX_SYMBOLS[value & 0xf];

1630 value >>= 4;

1631 }

1632

Nakamoto.Games | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1628

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PowerfulERC20.sol

Locations

1627 buffer[1] = "x";

1628 for (uint256 i = 2 * length + 1; i > 1; --i) {

1629 buffer[i] = _HEX_SYMBOLS[value & 0xf];

1630 value >>= 4;

1631 }

1632

Nakamoto.Games | Security Analysis

SWC-101 | ARITHMETIC OPERATION "--" DISCOVERED
LINE 1628

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PowerfulERC20.sol

Locations

1627 buffer[1] = "x";

1628 for (uint256 i = 2 * length + 1; i > 1; --i) {

1629 buffer[i] = _HEX_SYMBOLS[value & 0xf];

1630 value >>= 4;

1631 }

1632

Nakamoto.Games | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 9

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PowerfulERC20.sol

Locations

8

9 pragma solidity ^0.8.0;

10

11 /**

12 * @dev Interface of the ERC20 standard as defined in the EIP.

13

Nakamoto.Games | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 100

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PowerfulERC20.sol

Locations

99

100 pragma solidity ^0.8.0;

101

102 /**

103 * @dev Interface for the optional metadata functions from the ERC20 standard.

104

Nakamoto.Games | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 126

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PowerfulERC20.sol

Locations

125

126 pragma solidity ^0.8.0;

127

128 /**

129 * @dev Provides information about the current execution context, including the

130

Nakamoto.Games | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 150

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PowerfulERC20.sol

Locations

149

150 pragma solidity ^0.8.0;

151

152 /**

153 * @dev Implementation of the {IERC20} interface.

154

Nakamoto.Games | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 545

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PowerfulERC20.sol

Locations

544

545 pragma solidity ^0.8.0;

546

547 /**

548 * @dev Extension of {ERC20} that allows token holders to destroy both their own

549

Nakamoto.Games | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 588

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PowerfulERC20.sol

Locations

587

588 pragma solidity ^0.8.0;

589

590 /**

591 * @dev Extension of {ERC20} that adds a cap to the supply of tokens.

592

Nakamoto.Games | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 626

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PowerfulERC20.sol

Locations

625

626 pragma solidity ^0.8.0;

627

628 /**

629 * @dev Collection of functions related to the address type

630

Nakamoto.Games | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 880

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PowerfulERC20.sol

Locations

879

880 pragma solidity ^0.8.0;

881

882 /**

883 * @dev Interface of the ERC165 standard, as defined in the

884

Nakamoto.Games | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 905

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PowerfulERC20.sol

Locations

904

905 pragma solidity ^0.8.0;

906

907 /**

908 * @dev Implementation of the {IERC165} interface.

909

Nakamoto.Games | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 938

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PowerfulERC20.sol

Locations

937

938 pragma solidity ^0.8.0;

939

940 /**

941 * @title IERC1363 Interface

942

Nakamoto.Games | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1031

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PowerfulERC20.sol

Locations

1030

1031 pragma solidity ^0.8.0;

1032

1033 /**

1034 * @title IERC1363Receiver Interface

1035

Nakamoto.Games | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1063

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PowerfulERC20.sol

Locations

1062

1063 pragma solidity ^0.8.0;

1064

1065 /**

1066 * @title IERC1363Spender Interface

1067

Nakamoto.Games | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1093

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PowerfulERC20.sol

Locations

1092

1093 pragma solidity ^0.8.0;

1094

1095 /**

1096 * @title ERC1363

1097

Nakamoto.Games | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1279

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PowerfulERC20.sol

Locations

1278

1279 pragma solidity ^0.8.0;

1280

1281 /**

1282 * @dev Contract module which provides a basic access control mechanism, where

1283

Nakamoto.Games | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1355

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PowerfulERC20.sol

Locations

1354

1355 pragma solidity ^0.8.0;

1356

1357 /**

1358 * @title TokenRecover

1359

Nakamoto.Games | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1378

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PowerfulERC20.sol

Locations

1377

1378 pragma solidity ^0.8.0;

1379

1380 /**

1381 * @title ERC20Decimals

1382

Nakamoto.Games | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1402

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PowerfulERC20.sol

Locations

1401

1402 pragma solidity ^0.8.0;

1403

1404 /**

1405 * @title ERC20Mintable

1406

Nakamoto.Games | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1465

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PowerfulERC20.sol

Locations

1464

1465 pragma solidity ^0.8.0;

1466

1467 /**

1468 * @dev External interface of AccessControl declared to support ERC165 detection.

1469

Nakamoto.Games | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1568

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PowerfulERC20.sol

Locations

1567

1568 pragma solidity ^0.8.0;

1569

1570 /**

1571 * @dev String operations.

1572

Nakamoto.Games | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1639

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PowerfulERC20.sol

Locations

1638

1639 pragma solidity ^0.8.0;

1640

1641 /**

1642 * @dev Contract module that allows children to implement role-based access

1643

Nakamoto.Games | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1875

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PowerfulERC20.sol

Locations

1874

1875 pragma solidity ^0.8.0;

1876

1877 contract Roles is AccessControl {

1878 bytes32 public constant MINTER_ROLE = keccak256("MINTER");

1879

Nakamoto.Games | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1896

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PowerfulERC20.sol

Locations

1895

1896 pragma solidity ^0.8.0;

1897

1898 /**

1899 * @title PowerfulERC20

1900

Nakamoto.Games | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1595

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- PowerfulERC20.sol

Locations

1594 digits -= 1;

1595 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

1596 value /= 10;

1597 }

1598 return string(buffer);

1599

Nakamoto.Games | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1626

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- PowerfulERC20.sol

Locations

1625 bytes memory buffer = new bytes(2 * length + 2);

1626 buffer[0] = "0";

1627 buffer[1] = "x";

1628 for (uint256 i = 2 * length + 1; i > 1; --i) {

1629 buffer[i] = _HEX_SYMBOLS[value & 0xf];

1630

Nakamoto.Games | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1627

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- PowerfulERC20.sol

Locations

1626 buffer[0] = "0";

1627 buffer[1] = "x";

1628 for (uint256 i = 2 * length + 1; i > 1; --i) {

1629 buffer[i] = _HEX_SYMBOLS[value & 0xf];

1630 value >>= 4;

1631

Nakamoto.Games | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1629

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- PowerfulERC20.sol

Locations

1628 for (uint256 i = 2 * length + 1; i > 1; --i) {

1629 buffer[i] = _HEX_SYMBOLS[value & 0xf];

1630 value >>= 4;

1631 }

1632 require(value == 0, "Strings: hex length insufficient");

1633

Nakamoto.Games | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1629

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- PowerfulERC20.sol

Locations

1628 for (uint256 i = 2 * length + 1; i > 1; --i) {

1629 buffer[i] = _HEX_SYMBOLS[value & 0xf];

1630 value >>= 4;

1631 }

1632 require(value == 0, "Strings: hex length insufficient");

1633

Nakamoto.Games | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Nakamoto.Games | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

