
Eggs

Smart Contract
Audit Report

29 Jan 2023

Eggs | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Eggs | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Eggs EGGS Ethereum

| Addresses

Contract address 0x2e516ba5bf3b7ee47fb99b09eadb60bde80a82e0

Contract deployer address 0xF5bcd6Bef04a6d6c5643b16D8E00D2EA42956f81

| Project Website

https://eggs.care/

| Codebase

https://etherscan.io/address/0x2e516ba5bf3b7ee47fb99b09eadb60bde80a82e0#code

https://eggs.care/
https://etherscan.io/address/0x2e516ba5bf3b7ee47fb99b09eadb60bde80a82e0#code

Eggs | Security Analysis

SUMMARY

EGGS is an experiment in decentralized finance, the way it works is that each block, EGGS can debase by
0.001% so you will have less EGGS. However if you place your EGGS in a Protec Single or LP staking Vault then
you will get more EGGS as reward.

| Contract Summary

Documentation Quality

Eggs provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Eggs with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 7, 445, 472,
507, 878, 952, 1057, 1091, 1117, 1398, 1491, 1580, 1890, 1952, 2043, 2071, 2497, 2533, 2555, 2704,
2951, 3029 and 3055.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 1878 and 1735.
SWC-116 | It is recommended to use oracles for block values as a proxy for time on lines 3418.

Eggs | Security Analysis

CONCLUSION

We have audited the Eggs project released on January 2023 to discover issues and identify potential security
vulnerabilities in Eggs Project. This process is used to find technical issues and security loopholes which might
be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The Eggs smart contract code issues do not pose a considerable risk. The writing of the contract is close to
the standard of writing contracts in general. The low-risk issues found are some arithmetic operation issues, a
floating pragma is set, a user-provided assertion failure, a control flow decision is made based on The
block.timestamp environment variable, and requirement violation. A floating pragma is set, the current pragma
Solidity directive is ""^0.8.0"". Specifying a fixed compiler version is recommended to ensure that the bytecode
produced does not vary between builds. This is especially important if you rely on bytecode-level verification of
the code. A user-provided assertion failed, and a user-provided assertion failed with the message 'Panic(0x11)'.
A control flow decision is made based on The block.timestamp environment variable. The block.timestamp
environment variable determines a control flow decision. Note that the values of variables like coinbase, gas
limit, block number, and timestamp are predictable and can be manipulated by a malicious miner. Also, keep in
mind that attackers know hashes of earlier blocks. Don't use any of those environment variables as sources of
randomness; be aware that using these variables introduces a certain level of trust into miners.

Eggs | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

PASS

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Eggs | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations.
ISSUE

FOUND

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Eggs | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Eggs | Security Analysis

SMART CONTRACT ANALYSIS

Started Saturday Jan 28 2023 01:35:56 GMT+0000 (Coordinated Universal Time)

Finished Sunday Jan 29 2023 19:18:39 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File Eggs.sol

| Detected Issues

ID Title Severity Status

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-110 A USER-PROVIDED ASSERTION FAILED. low acknowledged

SWC-116
A CONTROL FLOW DECISION IS MADE BASED ON THE
BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.

low acknowledged

SWC-123 REQUIREMENT VIOLATION. low acknowledged

Eggs | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 7

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Eggs.sol

Locations

6

7 pragma solidity ^0.8.0;

8

9 /**

10 * @dev Library for managing

11

Eggs | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 445

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Eggs.sol

Locations

444

445 pragma solidity ^0.8.0;

446

447 /**

448 * @dev Interface of the ERC165 standard, as defined in the

449

Eggs | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 472

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Eggs.sol

Locations

471

472 pragma solidity ^0.8.0;

473

474 /**

475 * @dev Implementation of the {IERC165} interface.

476

Eggs | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 507

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Eggs.sol

Locations

506

507 pragma solidity ^0.8.0;

508

509 /**

510 * @dev Standard math utilities missing in the Solidity language.

511

Eggs | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 878

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Eggs.sol

Locations

877

878 pragma solidity ^0.8.0;

879

880 /**

881 * @dev String operations.

882

Eggs | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 952

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Eggs.sol

Locations

951

952 pragma solidity ^0.8.0;

953

954 /**

955 * @dev External interface of AccessControl declared to support ERC165 detection.

956

Eggs | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1057

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Eggs.sol

Locations

1056

1057 pragma solidity ^0.8.0;

1058

1059 /**

1060 * @dev External interface of AccessControlEnumerable declared to support ERC165

detection.

1061

Eggs | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1091

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Eggs.sol

Locations

1090

1091 pragma solidity ^0.8.0;

1092

1093 /**

1094 * @dev Provides information about the current execution context, including the

1095

Eggs | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1117

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Eggs.sol

Locations

1116

1117 pragma solidity ^0.8.0;

1118

1119 /**

1120 * @dev Contract module that allows children to implement role-based access

1121

Eggs | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1398

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Eggs.sol

Locations

1397

1398 pragma solidity ^0.8.0;

1399

1400 /**

1401 * @dev Extension of {AccessControl} that allows enumerating the members of each

role.

1402

Eggs | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1491

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Eggs.sol

Locations

1490

1491 pragma solidity ^0.8.0;

1492

1493 /**

1494 * @dev Contract module which provides a basic access control mechanism, where

1495

Eggs | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1580

low SEVERITY
The current pragma Solidity directive is ""^0.8.1"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Eggs.sol

Locations

1579

1580 pragma solidity ^0.8.1;

1581

1582 /**

1583 * @dev Collection of functions related to the address type

1584

Eggs | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1890

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Eggs.sol

Locations

1889

1890 pragma solidity ^0.8.0;

1891

1892 /**

1893 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via

signatures, as defined in

1894

Eggs | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1952

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Eggs.sol

Locations

1951

1952 pragma solidity ^0.8.0;

1953

1954 /**

1955 * @dev Interface of the ERC20 standard as defined in the EIP.

1956

Eggs | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 2043

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Eggs.sol

Locations

2042

2043 pragma solidity ^0.8.0;

2044

2045 /**

2046 * @dev Interface for the optional metadata functions from the ERC20 standard.

2047

Eggs | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 2071

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Eggs.sol

Locations

2070

2071 pragma solidity ^0.8.0;

2072

2073 /**

2074 * @dev Implementation of the {IERC20} interface.

2075

Eggs | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 2497

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Eggs.sol

Locations

2496

2497 pragma solidity ^0.8.0;

2498

2499 /**

2500 * @dev Extension of {ERC20} that allows token holders to destroy both their own

2501

Eggs | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 2533

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Eggs.sol

Locations

2532

2533 pragma solidity ^0.8.0;

2534

2535 contract ERC20PresetMinterRebaser is

2536 Context,

2537

Eggs | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 2555

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Eggs.sol

Locations

2554

2555 pragma solidity ^0.8.0;

2556

2557 /**

2558 * @title SafeERC20

2559

Eggs | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 2704

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Eggs.sol

Locations

2703

2704 pragma solidity ^0.8.0;

2705

2706 // CAUTION

2707 // This version of SafeMath should only be used with Solidity 0.8 or later,

2708

Eggs | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 2951

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Eggs.sol

Locations

2950

2951 pragma solidity ^0.8.0;

2952

2953 // Storage for a EGGS token

2954 contract EGGS {

2955

Eggs | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 3029

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Eggs.sol

Locations

3028

3029 pragma solidity ^0.8.0;

3030

3031 abstract contract IEGGS {

3032 /**

3033

Eggs | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 3055

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Eggs.sol

Locations

3054

3055 pragma solidity ^0.8.0;

3056

3057 contract Eggs is ERC20PresetMinterRebaser, Ownable, IEGGS {

3058 using SafeMath for uint256;

3059

Eggs | Security Analysis

SWC-110 | A USER-PROVIDED ASSERTION FAILED.
LINE 1878

low SEVERITY
A user-provided assertion failed with the message 'Panic(0x11)'.

Source File
- Eggs.sol

Locations

1877 let returndata_size := mload(returndata)

1878 revert(add(32, returndata), returndata_size)

1879 }

1880 } else {

1881 revert(errorMessage);

1882

Eggs | Security Analysis

SWC-116 | A CONTROL FLOW DECISION IS MADE BASED ON
THE BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.
LINE 3418

low SEVERITY
The block.timestamp environment variable is used to determine a control flow decision. Note that the values of
variables like coinbase, gaslimit, block number and timestamp are predictable and can be manipulated by a
malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those
environment variables as sources of randomness and be aware that use of these variables introduces a certain
level of trust into miners.

Source File
- Eggs.sol

Locations

3417) public {

3418 require(block.timestamp <= deadline, "EGGS/permit-expired");

3419

3420 bytes32 digest = keccak256(

3421 abi.encodePacked(

3422

Eggs | Security Analysis

SWC-123 | REQUIREMENT VIOLATION.
LINE 1735

low SEVERITY
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are
provided to the nested call (for instance, via passed arguments).

Source File
- Eggs.sol

Locations

1734);

1735 (bool success, bytes memory returndata) = target.call{value: value}(

1736 data

1737);

1738 return

1739

Eggs | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Eggs | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

