
BITTOKEN

Smart Contract
Audit Report

22 Nov 2020

BITTOKEN | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

BITTOKEN | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

BITTOKEN BITT Ethereum

| Addresses

Contract address 0x9f9913853f749b3fe6d6d4e16a1cc3c1656b6d51

Contract deployer address 0xd4CeA40761CaB3B05Bba3A7C2CD3124C5FAEa53b

| Project Website

https://bittoken.club/

| Codebase

https://etherscan.io/address/0x9f9913853f749b3fe6d6d4e16a1cc3c1656b6d51#code

https://bittoken.club/
https://etherscan.io/address/0x9f9913853f749b3fe6d6d4e16a1cc3c1656b6d51#code

BITTOKEN | Security Analysis

SUMMARY

BITT is the native token for every crypto community! It is designed with the sole purpose in mind of rewarding
group members and developing fun and unique utility for any project. BITT is a giving token that will evolve
based on the needs of its holders. Members and affiliates of the BITToken club will be rewarded for engaging
with BITT platforms, being active within communities while holding, staking, and spending their BITT. There is
no presale for BITT because the ideals of the project are centered around bringing value to communities, not
extracting capital from investors. When the vision of the BITToken project is fully realized, members of the
diverse and expanding crypto space will have one token that unites them.

| Contract Summary

Documentation Quality

BITTOKEN provides a very poor documentation with standard of solidity base code.

The technical description is provided unclear and disorganized.

Code Quality

The Overall quality of the basecode is poor.

Solidity basecode and rules are unclear and disorganized by BITTOKEN.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 1109.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 9, 36, 116,
278, 422, 731, 765, 814, 856, 1042 and 1084.
SWC-116 | It is recommended to use oracles for block values as a proxy for time on lines 1109.

BITTOKEN | Security Analysis

CONCLUSION

We have audited the BITTOKEN project released in November 2020 to find issues and identify potential
security vulnerabilities in the BITTOKEN project. This process is used to find technical issues and security
loopholes that may be found in smart contracts.

The security audit report gave unsatisfactory results with the discovery of high-risk issues and several other
low-risk issues.

Writing a contract that does not follow the Solidity style guide can pose a significant risk. The high risk
problem we found is the arithmetic operator can overflow, and It is possible to cause an integer overflow in the
arithmetic operation. Whereas Low risk Issues we found are floating pragmas set on several lines and the
control flow decision is made based on the block.timestamp environment variable. Note that the values of
variables like coinbase, gaslimit, block number and timestamp are predictable and can be manipulated by a
malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Avoid using any of those
environment variables as sources of randomness and be aware that the use of these variables introduces a
certain level of trust into miners.

BITTOKEN | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

PASS

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

BITTOKEN | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations.
ISSUE

FOUND

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

BITTOKEN | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

BITTOKEN | Security Analysis

SMART CONTRACT ANALYSIS

Started Saturday Nov 21 2020 14:53:16 GMT+0000 (Coordinated Universal Time)

Finished Sunday Nov 22 2020 22:58:51 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File BITTOKEN.sol

| Detected Issues

ID Title Severity Status

SWC-101 THE ARITHMETIC OPERATOR CAN OVERFLOW. high acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-116
A CONTROL FLOW DECISION IS MADE BASED ON THE
BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.

low acknowledged

BITTOKEN | Security Analysis

SWC-101 | THE ARITHMETIC OPERATOR CAN OVERFLOW.
LINE 1109

high SEVERITY
It is possible to cause an integer overflow or underflow in the arithmetic operation.

Source File
- BITTOKEN.sol

Locations

1108 // solhint-disable-next-line not-rely-on-time

1109 require(block.timestamp >= _snapshotTimestamp + 30 days, "Not passed 30 days

yet");

1110 // update snapshot timestamp with new time

1111 _snapshotTimestamp = block.timestamp;

1112

1113

BITTOKEN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 9

low SEVERITY
The current pragma Solidity directive is ""^0.6.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BITTOKEN.sol

Locations

8

9 pragma solidity ^0.6.0;

10

11 /*

12 * @dev Provides information about the current execution context, including the

13

BITTOKEN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 36

low SEVERITY
The current pragma Solidity directive is ""^0.6.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BITTOKEN.sol

Locations

35

36 pragma solidity ^0.6.0;

37

38 /**

39 * @dev Interface of the ERC20 standard as defined in the EIP.

40

BITTOKEN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 116

low SEVERITY
The current pragma Solidity directive is ""^0.6.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BITTOKEN.sol

Locations

115

116 pragma solidity ^0.6.0;

117

118 /**

119 * @dev Wrappers over Solidity's arithmetic operations with added overflow

120

BITTOKEN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 278

low SEVERITY
The current pragma Solidity directive is ""^0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BITTOKEN.sol

Locations

277

278 pragma solidity ^0.6.2;

279

280 /**

281 * @dev Collection of functions related to the address type

282

BITTOKEN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 422

low SEVERITY
The current pragma Solidity directive is ""^0.6.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BITTOKEN.sol

Locations

421

422 pragma solidity ^0.6.0;

423

424

425

426

BITTOKEN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 731

low SEVERITY
The current pragma Solidity directive is ""^0.6.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BITTOKEN.sol

Locations

730

731 pragma solidity ^0.6.0;

732

733 /**

734 * @dev Standard math utilities missing in the Solidity language.

735

BITTOKEN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 765

low SEVERITY
The current pragma Solidity directive is ""^0.6.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BITTOKEN.sol

Locations

764

765 pragma solidity ^0.6.0;

766

767

768 /**

769

BITTOKEN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 814

low SEVERITY
The current pragma Solidity directive is ""^0.6.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BITTOKEN.sol

Locations

813

814 pragma solidity ^0.6.0;

815

816

817 /**

818

BITTOKEN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 856

low SEVERITY
The current pragma Solidity directive is ""^0.6.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BITTOKEN.sol

Locations

855

856 pragma solidity ^0.6.0;

857

858

859

860

BITTOKEN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1042

low SEVERITY
The current pragma Solidity directive is ""^0.6.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BITTOKEN.sol

Locations

1041

1042 pragma solidity ^0.6.0;

1043

1044

1045

1046

BITTOKEN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1084

low SEVERITY
The current pragma Solidity directive is ""^0.6.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BITTOKEN.sol

Locations

1083 // SPDX-License-Identifier: MIT

1084 pragma solidity ^0.6.0;

1085

1086

1087

1088

BITTOKEN | Security Analysis

SWC-116 | A CONTROL FLOW DECISION IS MADE BASED ON
THE BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.
LINE 1109

low SEVERITY
The block.timestamp environment variable is used to determine a control flow decision. Note that the values of
variables like coinbase, gaslimit, block number and timestamp are predictable and can be manipulated by a
malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those
environment variables as sources of randomness and be aware that use of these variables introduces a certain
level of trust into miners.

Source File
- BITTOKEN.sol

Locations

1108 // solhint-disable-next-line not-rely-on-time

1109 require(block.timestamp >= _snapshotTimestamp + 30 days, "Not passed 30 days

yet");

1110 // update snapshot timestamp with new time

1111 _snapshotTimestamp = block.timestamp;

1112

1113

BITTOKEN | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

BITTOKEN | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

