

Chainlabs DAO Smart Contract Audit Report

15 Jan 2023

TABLE OF CONTENTS

Audited Details

- Audited Project
- Blockchain
- Addresses
- Project Website
- Codebase

Summary

- Contract Summary
- Audit Findings Summary
- Vulnerabilities Summary

Conclusion

Audit Results

Smart Contract Analysis

- Detected Vulnerabilities

Disclaimer

About Us

AUDITED DETAILS

Audited Project

Project name	Token ticker	Blockchain	
Chainlabs DAO	CDAO	BSC	

Addresses

Contract address 0x2Ea51Ee71A6566b5daAB31CC136f687B80Cc6eAe	
Contract deployer address	0x1a08bE520FD49E18217F637f9BA27d687B02dDfc

Project Website

https://www.chainlabsdao.com/

Codebase

https://bscscan.com/address/0x2ea51ee71a6566b5daab31cc136f687b80cc6eae#code

G

SUMMARY

The presale for CDAO, the first DAO-based cryptocurrency that combines gaming and social media, is a great way for investors to get in on the ground floor and potentially see significant returns on their investment while contributing to the SocialFi ecosystem. Participating in the CDAO presale allows individuals to gain access to the first decentralized autonomous organization (DAO) based cryptocurrency that combines gaming and social media.

Contract Summary

Documentation Quality

Chainlabs DAO provides a document with a very good standard of solidity base code.

• The technical description is provided clearly and structured and also don't have any high risk issue.

Code Quality

The Overall quality of the basecode is GOOD

• Standart solidity basecode and rules are already followed with Coinhound Project .

Test Coverage

Test coverage of the project is 100% (Through Codebase)

Audit Findings Summary

- SWC-103 | A floating pragma is set on lines 9. The current pragma Solidity directive is ""^0.8.17"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code.
- SWC-108 | State variable visibility is not set on lines 129, and 133 .It is best practice to set the visibility of state variables explicitly. The default visibility for "protections" is internal. Other possible visibility settings are public and private.

CONCLUSION

We have audited the Goge Coin which has released on January 2023 to discover issues and identify potential security vulnerabilities in Goge Project. This process is used to find bugs, technical issues, and security loopholes that find some common issues in the code.

The security audit report produced satisfactory results with a low risk issue on the contract project.

The most common issue found in writing code on contracts that do not pose a big risk, writing on contracts is close to the standard of writing contracts in general. Some of the low issues that were found stated variable visibility are not set, and a floating pragma is set. We recommended specifying a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code.

AUDIT RESULT

Article	Category	Description	Result	
Default Visibility	SWC-100 SWC-108	Functions and state variables visibility should be set explicitly. Visibility levels should be specified consciously.	ISSUE	
Integer Overflow and Underflow	SWC-101	If unchecked math is used, all math operations should be safe from overflows and underflows.	PASS	
Outdated Compiler Version	SWC-102	It is recommended to use a recent version of the Solidity compiler.	PASS	
Floating Pragma	SWC-103	Contracts should be deployed with the same compiler version and flags that they have been tested thoroughly.	ISSUE FOUND	
Unchecked Call Return Value	SWC-104	The return value of a message call should be checked.	PASS	
SELFDESTRUCT Instruction	SWC-106	The contract should not be self-destructible while it has funds belonging to users.	PASS	
Check-Effect Interaction	SWC-107	Check-Effect-Interaction pattern should be followed if the code performs ANY external call.	PASS	
Assert Violation	SWC-110	Properly functioning code should never reach a failing assert statement.	PASS	
Deprecated Solidity Functions	SWC-111	Deprecated built-in functions should never be used.	PASS	
Delegate call to Untrusted Caller	SWC-112	Delegatecalls should only be allowed to trusted addresses.	PASS	
DoS (Denial of Service)	SWC-113 SWC-128	Execution of the code should never be blocked by a specific contract state unless required.	PASS	
Race Conditions	SWC-114	Race Conditions and Transactions Order Dependency should not be possible.	PASS	

Authorization through tx.origin	SWC-115	tx.origin should not be used for authorization.	
Block values as a proxy for time	SWC-116	Block numbers should not be used for time calculations.	
Signature Unique Id	SWC-117 SWC-121 SWC-122	Signed messages should always have a unique id. A transaction hash should not be used as a unique id.	
Shadowing State Variable	SWC-119	State variables should not be shadowed.	
Weak Sources of Randomness	SWC-120	Random values should never be generated from Chain Attributes or be predictable.	
Incorrect Inheritance Order	SWC-125		PASS

SMART CONTRACT ANALYSIS

Started	Sat Jan 14 2023 04:19:44 GMT+0000 (Coordinated Universal Time)		
Finished	Sun Jan 15 2023 05:19:44 GMT+0000 (Coordinated Universal Time)		
Mode	Standard		
Main Source File	Cointoken.sol		

Detected Issues

ID	Title	Severity	Status
SWC-103	A FLOATING PRAGMA IS SET.	low	acknowledged
SWC-108	STATE VARIABLE VISIBILITY IS NOT SET.	low	acknowledged
SWC-108	STATE VARIABLE VISIBILITY IS NOT SET.	low	acknowledged

SWC-103 | A FLOATING PRAGMA IS SET.

LINE 9

IOW SEVERITY

The current pragma Solidity directive is ""^0.4.24"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code.

Source File

- Cointoken.Sol

Locations

8
9 pragma solidity ^0.4.24;
10
11 library SafeMath {
12 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.

LINE 129

Iow SEVERITY

It is best practice to set the visibility of state variables explicitly. The default visibility for "tokenBlacklist" is internal. Other possible visibility settings are public and private.

Source File

- Cointoken.Sol

Locations

```
128 mapping (address => mapping (address => uint256)) internal allowed;
129 mapping(address => bool) tokenBlacklist;
130 event Blacklist(address indexed blackListed, bool value);
131
132
```


C

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.

LINE 133

Iow SEVERITY

It is best practice to set the visibility of state variables explicitly. The default visibility for "balances" is internal. Other possible visibility settings are public and private.

Source File

- Cointoken.Sol

Locations

```
132
133 mapping(address => uint256) balances;
134
135
136 function transfer(address _to, uint256 _value) public returns (bool) {
```


DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions provided to you ("Customer" or the "Company") in connection with the Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in each instance.

This report is not, nor should be considered, an "endorsement" or "disapproval" of any particular project or team. This report is not, nor should be considered, an indication of the economics or value of any "product" or "asset" created by any team or project that contracts Sysfixed to perform a security assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies proprietors, business, business model, or legal compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms based on smart contracts, the details of which are set out in this report. In order to get a full view of our analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and producing this report, it is important to note that you should not rely on this report and cannot claim against us on the basis of what it says or doesn't say, or how we produced it, and it is important for you to conduct your own independent investigations before making any decisions. We go into more detail on this in the below disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any particular project. This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report represents an extensive assessing process intending to help our customers increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other representatives) (Sysfixed) owe no duty of care.

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts. Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and improvement of our tools and techniques used to fortify your code.