
LoopNetwork

Smart Contract
Audit Report

01 Feb 2022

LoopNetwork | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

LoopNetwork | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

LoopNetwork LOOP Binance Smart Chain

| Addresses

Contract address 0xce186ad6430e2fe494a22c9edbd4c68794a28b35

Contract deployer address 0x954137f063c821cd8247Ab2E1235b4548B8ac8D5

| Project Website

https://www.getloop.network/

| Codebase

https://bscscan.com/address/0xce186ad6430e2fe494a22c9edbd4c68794a28b35#code

https://www.getloop.network/
https://bscscan.com/address/0xce186ad6430e2fe494a22c9edbd4c68794a28b35#code

LoopNetwork | Security Analysis

SUMMARY

A cryptocurrency system that supports smart contracts without the scalability and privacy limitations of earlier
systems like Ethereum. Loop network, like Ethereum, allows parties to create smart contracts using code to
specify the behavior of the virtual machine (VM) that executes the contract's function.Loop Network strives to
solve scalability and usability issues, without compromising decentralization, and leverages the existing
developer community and ecosystem. It is an off-chain/external scaling solution for existing platforms to
provide scalability and superior user experience for DApps/user features.

| Contract Summary

Documentation Quality

LoopNetwork provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by LoopNetwork with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 36, 40, 44, 48, 54, 61, 413, 413, 598, 653, 658, 671, 676, 733, 733, 738, 738, 798, 900, 900, 974, 994
and 994.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 17.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 656, 657, 674, 675, 909 and 910.
SWC-131 SWC-135 | It is recommended to remove all unused variables from the code base on lines 898.

LoopNetwork | Security Analysis

CONCLUSION

We have audited the LoopNetwork project released on January 2022 to discover issues and identify potential
security vulnerabilities in LoopNetwork Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the LoopNetwork smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, usage of equality comparison instead of assignment, and out-of-
bounds array access which the index access expression can cause an exception in case of the use of an
invalid array index value. The current pragma Solidity directive is "^0.8.7". Specifying a fixed compiler version is
recommended to ensure that the bytecode produced does not vary between builds. This is especially important
if you rely on bytecode-level verification of the code. Using equality comparison instead of assignment, this
equality comparison has no effect.

LoopNetwork | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

LoopNetwork | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

LoopNetwork | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

LoopNetwork | Security Analysis

SMART CONTRACT ANALYSIS

Started Monday Jan 31 2022 08:14:25 GMT+0000 (Coordinated Universal Time)

Finished Tuesday Feb 01 2022 16:26:47 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File LoopNetwork.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-135 USAGE OF EQUALITY COMPARISON INSTEAD OF ASSIGNMENT low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

LoopNetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 36

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LoopNetwork.sol

Locations

35 function add(uint256 a, uint256 b) internal pure returns (uint256) {

36 return a + b;

37 }

38

39 function sub(uint256 a, uint256 b) internal pure returns (uint256) {

40

LoopNetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 40

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LoopNetwork.sol

Locations

39 function sub(uint256 a, uint256 b) internal pure returns (uint256) {

40 return a - b;

41 }

42

43 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

44

LoopNetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 44

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LoopNetwork.sol

Locations

43 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

44 return a * b;

45 }

46

47 function div(uint256 a, uint256 b) internal pure returns (uint256) {

48

LoopNetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 48

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LoopNetwork.sol

Locations

47 function div(uint256 a, uint256 b) internal pure returns (uint256) {

48 return a / b;

49 }

50

51 function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns

(uint256) {

52

LoopNetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 54

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LoopNetwork.sol

Locations

53 require(b <= a, errorMessage);

54 return a - b;

55 }

56 }

57

58

LoopNetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 61

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LoopNetwork.sol

Locations

60 require(b > 0, errorMessage);

61 return a / b;

62 }

63 }

64

65

LoopNetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 413

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LoopNetwork.sol

Locations

412 uint8 private _decimals = 18;

413 uint256 private _tTotal = 200000000 * 10**18;

414 uint256 private _tFeeTotal;

415

416 // Counter for liquify trigger

417

LoopNetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 413

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LoopNetwork.sol

Locations

412 uint8 private _decimals = 18;

413 uint256 private _tTotal = 200000000 * 10**18;

414 uint256 private _tFeeTotal;

415

416 // Counter for liquify trigger

417

LoopNetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 598

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LoopNetwork.sol

Locations

597

598 require((Buy_Fee + Sell_Fee) <= maxPossibleFee, "Fee is too high!");

599 _sellFee = Sell_Fee;

600 _buyFee = Buy_Fee;

601

602

LoopNetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 653

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LoopNetwork.sol

Locations

652

653 for (uint256 i; i < addresses.length; ++i) {

654 if(gasUsed < gasleft()) {

655 startGas = gasleft();

656 if(!_isBlacklisted[addresses[i]]){

657

LoopNetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 658

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LoopNetwork.sol

Locations

657 _isBlacklisted[addresses[i]] = true;}

658 gasUsed = startGas - gasleft();

659 }

660 }

661 }

662

LoopNetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 671

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LoopNetwork.sol

Locations

670

671 for (uint256 i; i < addresses.length; ++i) {

672 if(gasUsed < gasleft()) {

673 startGas = gasleft();

674 if(_isBlacklisted[addresses[i]]){

675

LoopNetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 676

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LoopNetwork.sol

Locations

675 _isBlacklisted[addresses[i]] = false;}

676 gasUsed = startGas - gasleft();

677 }

678 }

679 }

680

LoopNetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 733

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LoopNetwork.sol

Locations

732 function set_Max_Transaction_Percent(uint256 maxTxPercent_x100) external

onlyOwner() {

733 _maxTxAmount = _tTotal*maxTxPercent_x100/10000;

734 }

735

736 // Set the maximum wallet holding (percent of total supply)

737

LoopNetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 733

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LoopNetwork.sol

Locations

732 function set_Max_Transaction_Percent(uint256 maxTxPercent_x100) external

onlyOwner() {

733 _maxTxAmount = _tTotal*maxTxPercent_x100/10000;

734 }

735

736 // Set the maximum wallet holding (percent of total supply)

737

LoopNetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 738

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LoopNetwork.sol

Locations

737 function set_Max_Wallet_Percent(uint256 maxWallPercent_x100) external onlyOwner() {

738 _maxWalletToken = _tTotal*maxWallPercent_x100/10000;

739 }

740

741

742

LoopNetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 738

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LoopNetwork.sol

Locations

737 function set_Max_Wallet_Percent(uint256 maxWallPercent_x100) external onlyOwner() {

738 _maxWalletToken = _tTotal*maxWallPercent_x100/10000;

739 }

740

741

742

LoopNetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 798

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LoopNetwork.sol

Locations

797 uint256 heldTokens = balanceOf(to);

798 require((heldTokens + amount) <= _maxWalletToken,"You are trying to buy too many

tokens. You have reached the limit for one wallet.");}

799

800

801 // Limit the maximum number of tokens that can be bought or sold in one transaction

802

LoopNetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 900

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LoopNetwork.sol

Locations

899 uint256 tokensOnContract = balanceOf(address(this));

900 uint256 sendTokens = tokensOnContract*percent_Of_Tokens_To_Process/100;

901 swapAndLiquify(sendTokens);

902 }

903

904

LoopNetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 900

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LoopNetwork.sol

Locations

899 uint256 tokensOnContract = balanceOf(address(this));

900 uint256 sendTokens = tokensOnContract*percent_Of_Tokens_To_Process/100;

901 swapAndLiquify(sendTokens);

902 }

903

904

LoopNetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 974

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LoopNetwork.sol

Locations

973 } else {

974 txCount++;

975 }

976 _transferTokens(sender, recipient, amount);

977

978

LoopNetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 994

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LoopNetwork.sol

Locations

993 function _getValues(uint256 tAmount) private view returns (uint256, uint256) {

994 uint256 tDev = tAmount*_TotalFee/100;

995 uint256 tTransferAmount = tAmount.sub(tDev);

996 return (tTransferAmount, tDev);

997 }

998

LoopNetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 994

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LoopNetwork.sol

Locations

993 function _getValues(uint256 tAmount) private view returns (uint256, uint256) {

994 uint256 tDev = tAmount*_TotalFee/100;

995 uint256 tTransferAmount = tAmount.sub(tDev);

996 return (tTransferAmount, tDev);

997 }

998

LoopNetwork | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 17

low SEVERITY
The current pragma Solidity directive is ""^0.8.7"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- LoopNetwork.sol

Locations

16

17 pragma solidity ^0.8.7;

18

19

20 interface IERC20 {

21

LoopNetwork | Security Analysis

SWC-135 | USAGE OF EQUALITY COMPARISON INSTEAD OF
ASSIGNMENT
LINE 898

low SEVERITY
This equality comparison doesn't have any effect. Did you mean to do assignment instead?

Source File
- LoopNetwork.sol

Locations

897 require(!inSwapAndLiquify, "Currently processing, try later.");

898 if (percent_Of_Tokens_To_Process > 100){percent_Of_Tokens_To_Process == 100;}

899 uint256 tokensOnContract = balanceOf(address(this));

900 uint256 sendTokens = tokensOnContract*percent_Of_Tokens_To_Process/100;

901 swapAndLiquify(sendTokens);

902

LoopNetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 656

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LoopNetwork.sol

Locations

655 startGas = gasleft();

656 if(!_isBlacklisted[addresses[i]]){

657 _isBlacklisted[addresses[i]] = true;}

658 gasUsed = startGas - gasleft();

659 }

660

LoopNetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 657

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LoopNetwork.sol

Locations

656 if(!_isBlacklisted[addresses[i]]){

657 _isBlacklisted[addresses[i]] = true;}

658 gasUsed = startGas - gasleft();

659 }

660 }

661

LoopNetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 674

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LoopNetwork.sol

Locations

673 startGas = gasleft();

674 if(_isBlacklisted[addresses[i]]){

675 _isBlacklisted[addresses[i]] = false;}

676 gasUsed = startGas - gasleft();

677 }

678

LoopNetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 675

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LoopNetwork.sol

Locations

674 if(_isBlacklisted[addresses[i]]){

675 _isBlacklisted[addresses[i]] = false;}

676 gasUsed = startGas - gasleft();

677 }

678 }

679

LoopNetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 909

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LoopNetwork.sol

Locations

908 address[] memory path = new address[](2);

909 path[0] = address(this);

910 path[1] = uniswapV2Router.WETH();

911 _approve(address(this), address(uniswapV2Router), tokenAmount);

912 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

913

LoopNetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 910

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LoopNetwork.sol

Locations

909 path[0] = address(this);

910 path[1] = uniswapV2Router.WETH();

911 _approve(address(this), address(uniswapV2Router), tokenAmount);

912 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

913 tokenAmount,

914

LoopNetwork | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

LoopNetwork | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

