
Shibonsu Inu

Smart Contract
Audit Report

04 Mar 2023

Shibonsu Inu | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Shibonsu Inu | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Shibonsu Inu Shibonsu Binance Smart Chain

| Addresses

Contract address 0xe093807237362aa30684c3e709c4d113d0eb997b

Contract deployer address 0xA80ee082C2Ea194feC1B0c7E2D117807b04e9B02

| Project Website

https://shibonsuinu.com/

| Codebase

https://bscscan.com/address/0xe093807237362aa30684c3e709c4d113d0eb997b#code

https://shibonsuinu.com/
https://bscscan.com/address/0xe093807237362aa30684c3e709c4d113d0eb997b#code

Shibonsu Inu | Security Analysis

SUMMARY

We are thrilled to announce the launch of our Instant Usage Rewards program for Shibonsu Inu! From now on,
each time a user transacts with Shibonsu Inu, we will reward 5% of the value to holders' decentralized wallets.
The more Shibonsu Inu is actively used, the more rewards all holders earn. ﻿ Our goal with this program is to
increase network health and usage and create a more engaged and connected community of users. With this
incentive structure, Shibonsu Inu holders have even more reason to utilize and hold their tokens! So join us in
rewarding usage and owning Shibonsu Inu today.

| Contract Summary

Documentation Quality

Shibonsu Inu provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Shibonsu Inu with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 137, 137, 137, 137, 138, 138, 140, 140, 237, 243, 253, 286, 301, 303, 325, 326, 331, 334, 336, 364,
364, 365, 365, 367, 367, 388, 394, 395, 397, 397, 405, 411, 414, 415, 417, 473, 477, 480, 481, 519, 531,
531 and 303.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 6.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 302, 303, 303, 412, 412, 414, 415, 503, 504 and 520.

Shibonsu Inu | Security Analysis

CONCLUSION

We have audited the Shibonsu Inu project released on March 2023 to discover issues and identify potential
security vulnerabilities in Shibonsu Inu Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the Shibonsu Inu smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, and out-of-bounds array access which the index access expression
can cause an exception in case an invalid array index value is used.

Shibonsu Inu | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Shibonsu Inu | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Shibonsu Inu | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Shibonsu Inu | Security Analysis

SMART CONTRACT ANALYSIS

Started Friday Mar 03 2023 13:42:15 GMT+0000 (Coordinated Universal Time)

Finished Saturday Mar 04 2023 19:27:29 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File Shibonsu.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 137

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

136

137 uint256 private _tTotal = 100 *10**15 * 10**_decimals;

138 uint256 private _rTotal = (MAX - (MAX % _tTotal));

139

140 uint256 public swapTokensAtAmount = 1e14 * 10**_decimals;

141

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 137

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

136

137 uint256 private _tTotal = 100 *10**15 * 10**_decimals;

138 uint256 private _rTotal = (MAX - (MAX % _tTotal));

139

140 uint256 public swapTokensAtAmount = 1e14 * 10**_decimals;

141

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 137

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

136

137 uint256 private _tTotal = 100 *10**15 * 10**_decimals;

138 uint256 private _rTotal = (MAX - (MAX % _tTotal));

139

140 uint256 public swapTokensAtAmount = 1e14 * 10**_decimals;

141

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 137

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

136

137 uint256 private _tTotal = 100 *10**15 * 10**_decimals;

138 uint256 private _rTotal = (MAX - (MAX % _tTotal));

139

140 uint256 public swapTokensAtAmount = 1e14 * 10**_decimals;

141

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 138

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

137 uint256 private _tTotal = 100 *10**15 * 10**_decimals;

138 uint256 private _rTotal = (MAX - (MAX % _tTotal));

139

140 uint256 public swapTokensAtAmount = 1e14 * 10**_decimals;

141

142

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 138

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

137 uint256 private _tTotal = 100 *10**15 * 10**_decimals;

138 uint256 private _rTotal = (MAX - (MAX % _tTotal));

139

140 uint256 public swapTokensAtAmount = 1e14 * 10**_decimals;

141

142

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 140

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

139

140 uint256 public swapTokensAtAmount = 1e14 * 10**_decimals;

141

142 address public deadWallet = 0x000000000000000000000000000000000000dEaD;

143 address public marketingWallet = 0xEe650087b95AB37a1d3492595D18dbDae0fE9020;

144

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 140

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

139

140 uint256 public swapTokensAtAmount = 1e14 * 10**_decimals;

141

142 address public deadWallet = 0x000000000000000000000000000000000000dEaD;

143 address public marketingWallet = 0xEe650087b95AB37a1d3492595D18dbDae0fE9020;

144

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 237

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

236 require(currentAllowance >= amount, "BEP20: transfer amount exceeds allowance");

237 _approve(sender, _msgSender(), currentAllowance - amount);

238

239 return true;

240 }

241

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 243

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

242 function increaseAllowance(address spender, uint256 addedValue) public returns

(bool) {

243 _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);

244 return true;

245 }

246

247

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 253

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

252 require(currentAllowance >= subtractedValue, "BEP20: decreased allowance below

zero");

253 _approve(_msgSender(), spender, currentAllowance - subtractedValue);

254

255 return true;

256 }

257

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 286

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

285 uint256 currentRate = _getRate();

286 return rAmount / currentRate;

287 }

288

289 //@dev kept original RFI naming -> "reward" as in reflection

290

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 301

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

300 require(_isExcluded[account], "Account is not excluded");

301 for (uint256 i = 0; i < _excluded.length; i++) {

302 if (_excluded[i] == account) {

303 _excluded[i] = _excluded[_excluded.length - 1];

304 _tOwned[account] = 0;

305

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 303

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

302 if (_excluded[i] == account) {

303 _excluded[i] = _excluded[_excluded.length - 1];

304 _tOwned[account] = 0;

305 _isExcluded[account] = false;

306 _excluded.pop();

307

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 325

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

324 function _reflectRfi(uint256 rRfi, uint256 tRfi) private {

325 _rTotal -= rRfi;

326 totFeesPaid.rfi += tRfi;

327 }

328

329

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 326

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

325 _rTotal -= rRfi;

326 totFeesPaid.rfi += tRfi;

327 }

328

329

330

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 331

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

330 function _takeMarketing(uint256 rMarketing, uint256 tMarketing) private {

331 totFeesPaid.marketing += tMarketing;

332

333 if (_isExcluded[address(this)]) {

334 _tOwned[address(this)] += tMarketing;

335

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 334

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

333 if (_isExcluded[address(this)]) {

334 _tOwned[address(this)] += tMarketing;

335 }

336 _rOwned[address(this)] += rMarketing;

337 }

338

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 336

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

335 }

336 _rOwned[address(this)] += rMarketing;

337 }

338

339

340

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 364

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

363

364 s.tRfi = (tAmount * taxes.rfi) / 100;

365 s.tMarketing = (tAmount * taxes.marketing) / 100;

366 s.tTransferAmount =

367 tAmount -

368

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 364

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

363

364 s.tRfi = (tAmount * taxes.rfi) / 100;

365 s.tMarketing = (tAmount * taxes.marketing) / 100;

366 s.tTransferAmount =

367 tAmount -

368

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 365

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

364 s.tRfi = (tAmount * taxes.rfi) / 100;

365 s.tMarketing = (tAmount * taxes.marketing) / 100;

366 s.tTransferAmount =

367 tAmount -

368 s.tRfi -

369

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 365

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

364 s.tRfi = (tAmount * taxes.rfi) / 100;

365 s.tMarketing = (tAmount * taxes.marketing) / 100;

366 s.tTransferAmount =

367 tAmount -

368 s.tRfi -

369

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 367

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

366 s.tTransferAmount =

367 tAmount -

368 s.tRfi -

369 s.tMarketing;

370 return s;

371

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 367

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

366 s.tTransferAmount =

367 tAmount -

368 s.tRfi -

369 s.tMarketing;

370 return s;

371

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 388

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

387 {

388 rAmount = tAmount * currentRate;

389

390 if (!takeFee) {

391 return (rAmount, rAmount, 0, 0);

392

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 394

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

393

394 rRfi = s.tRfi * currentRate;

395 rMarketing = s.tMarketing * currentRate;

396 rTransferAmount =

397 rAmount -

398

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 395

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

394 rRfi = s.tRfi * currentRate;

395 rMarketing = s.tMarketing * currentRate;

396 rTransferAmount =

397 rAmount -

398 rRfi -

399

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 397

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

396 rTransferAmount =

397 rAmount -

398 rRfi -

399 rMarketing;

400 return (rAmount, rTransferAmount, rRfi, rMarketing);

401

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 397

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

396 rTransferAmount =

397 rAmount -

398 rRfi -

399 rMarketing;

400 return (rAmount, rTransferAmount, rRfi, rMarketing);

401

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 405

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

404 (uint256 rSupply, uint256 tSupply) = _getCurrentSupply();

405 return rSupply / tSupply;

406 }

407

408 function _getCurrentSupply() private view returns (uint256, uint256) {

409

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 411

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

410 uint256 tSupply = _tTotal;

411 for (uint256 i = 0; i < _excluded.length; i++) {

412 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply)

413 return (_rTotal, _tTotal);

414 rSupply = rSupply - _rOwned[_excluded[i]];

415

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 414

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

413 return (_rTotal, _tTotal);

414 rSupply = rSupply - _rOwned[_excluded[i]];

415 tSupply = tSupply - _tOwned[_excluded[i]];

416 }

417 if (rSupply < _rTotal / _tTotal) return (_rTotal, _tTotal);

418

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 415

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

414 rSupply = rSupply - _rOwned[_excluded[i]];

415 tSupply = tSupply - _tOwned[_excluded[i]];

416 }

417 if (rSupply < _rTotal / _tTotal) return (_rTotal, _tTotal);

418 return (rSupply, tSupply);

419

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 417

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

416 }

417 if (rSupply < _rTotal / _tTotal) return (_rTotal, _tTotal);

418 return (rSupply, tSupply);

419 }

420

421

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 473

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

472 //from excluded

473 _tOwned[sender] = _tOwned[sender] - tAmount;

474 }

475 if (_isExcluded[recipient]) {

476 //to excluded

477

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 477

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

476 //to excluded

477 _tOwned[recipient] = _tOwned[recipient] + s.tTransferAmount;

478 }

479

480 _rOwned[sender] = _rOwned[sender] - s.rAmount;

481

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 480

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

479

480 _rOwned[sender] = _rOwned[sender] - s.rAmount;

481 _rOwned[recipient] = _rOwned[recipient] + s.rTransferAmount;

482

483 if (s.rRfi > 0 || s.tRfi > 0) _reflectRfi(s.rRfi, s.tRfi);

484

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 481

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

480 _rOwned[sender] = _rOwned[sender] - s.rAmount;

481 _rOwned[recipient] = _rOwned[recipient] + s.rTransferAmount;

482

483 if (s.rRfi > 0 || s.tRfi > 0) _reflectRfi(s.rRfi, s.tRfi);

484 if (s.rMarketing > 0 || s.tMarketing > 0) _takeMarketing(s.rMarketing,

s.tMarketing);

485

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 519

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

518 function bulkExcludeFee(address[] memory accounts, bool state) external onlyOwner {

519 for (uint256 i = 0; i < accounts.length; i++) {

520 _isExcludedFromFee[accounts[i]] = state;

521 }

522 }

523

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 531

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

530 require(amount <= 1e15, "Cannot set swap threshold amount higher than 1% of

tokens");

531 swapTokensAtAmount = amount * 10**_decimals;

532 }

533

534 //Use this in case BNB are sent to the contract by mistake

535

Shibonsu Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 531

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

530 require(amount <= 1e15, "Cannot set swap threshold amount higher than 1% of

tokens");

531 swapTokensAtAmount = amount * 10**_decimals;

532 }

533

534 //Use this in case BNB are sent to the contract by mistake

535

Shibonsu Inu | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 303

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibonsu.sol

Locations

302 if (_excluded[i] == account) {

303 _excluded[i] = _excluded[_excluded.length - 1];

304 _tOwned[account] = 0;

305 _isExcluded[account] = false;

306 _excluded.pop();

307

Shibonsu Inu | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 6

low SEVERITY
The current pragma Solidity directive is ""^0.8.17"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Shibonsu.sol

Locations

5 // SPDX-License-Identifier: UNLICENSE

6 pragma solidity ^0.8.17;

7

8 interface IBEP20 {

9 function totalSupply() external view returns (uint256);

10

Shibonsu Inu | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 302

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Shibonsu.sol

Locations

301 for (uint256 i = 0; i < _excluded.length; i++) {

302 if (_excluded[i] == account) {

303 _excluded[i] = _excluded[_excluded.length - 1];

304 _tOwned[account] = 0;

305 _isExcluded[account] = false;

306

Shibonsu Inu | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 303

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Shibonsu.sol

Locations

302 if (_excluded[i] == account) {

303 _excluded[i] = _excluded[_excluded.length - 1];

304 _tOwned[account] = 0;

305 _isExcluded[account] = false;

306 _excluded.pop();

307

Shibonsu Inu | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 303

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Shibonsu.sol

Locations

302 if (_excluded[i] == account) {

303 _excluded[i] = _excluded[_excluded.length - 1];

304 _tOwned[account] = 0;

305 _isExcluded[account] = false;

306 _excluded.pop();

307

Shibonsu Inu | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 412

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Shibonsu.sol

Locations

411 for (uint256 i = 0; i < _excluded.length; i++) {

412 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply)

413 return (_rTotal, _tTotal);

414 rSupply = rSupply - _rOwned[_excluded[i]];

415 tSupply = tSupply - _tOwned[_excluded[i]];

416

Shibonsu Inu | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 412

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Shibonsu.sol

Locations

411 for (uint256 i = 0; i < _excluded.length; i++) {

412 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply)

413 return (_rTotal, _tTotal);

414 rSupply = rSupply - _rOwned[_excluded[i]];

415 tSupply = tSupply - _tOwned[_excluded[i]];

416

Shibonsu Inu | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 414

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Shibonsu.sol

Locations

413 return (_rTotal, _tTotal);

414 rSupply = rSupply - _rOwned[_excluded[i]];

415 tSupply = tSupply - _tOwned[_excluded[i]];

416 }

417 if (rSupply < _rTotal / _tTotal) return (_rTotal, _tTotal);

418

Shibonsu Inu | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 415

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Shibonsu.sol

Locations

414 rSupply = rSupply - _rOwned[_excluded[i]];

415 tSupply = tSupply - _tOwned[_excluded[i]];

416 }

417 if (rSupply < _rTotal / _tTotal) return (_rTotal, _tTotal);

418 return (rSupply, tSupply);

419

Shibonsu Inu | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 503

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Shibonsu.sol

Locations

502 address[] memory path = new address[](2);

503 path[0] = address(this);

504 path[1] = router.WETH();

505

506 _approve(address(this), address(router), tokenAmount);

507

Shibonsu Inu | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 504

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Shibonsu.sol

Locations

503 path[0] = address(this);

504 path[1] = router.WETH();

505

506 _approve(address(this), address(router), tokenAmount);

507

508

Shibonsu Inu | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 520

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Shibonsu.sol

Locations

519 for (uint256 i = 0; i < accounts.length; i++) {

520 _isExcludedFromFee[accounts[i]] = state;

521 }

522 }

523

524

Shibonsu Inu | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Shibonsu Inu | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

