
RABBOGE INU

Smart Contract
Audit Report

07 Jan 2023

RABBOGE INU | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

RABBOGE INU | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

RABBOGE INU RABBOGE Binance Smart Chain

| Addresses

Contract address 0xD2a610E3b73e74E263ABaa3700D1773280c60654

Contract deployer address 0xF4a7833F52B85e79451e4cd824b3Ab17ac709Ca7

| Project Website

https://rabboge.com/

| Codebase

https://bscscan.com/address/0xD2a610E3b73e74E263ABaa3700D1773280c60654#code

https://rabboge.com/
https://bscscan.com/address/0xD2a610E3b73e74E263ABaa3700D1773280c60654#code

RABBOGE INU | Security Analysis

SUMMARY

Rabboge is The best of 2023 Meme (RABBIT + DOGE) Meme token. A decentralized platform that rewards
$DOGE for holders. Our advantages SAFU+KYC+Audit, Dexview Trending, No Private Sale, APP Live on Google
Play, Massive marketing, CMC - CG Fast Track, Tier #1 Influencers, and Promo Marketing is supported by the
incubator.

| Contract Summary

Documentation Quality

RABBOGE INU provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by RABBOGE INU with the discovery of
several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 118, 119, 121, 189, 190, 192
and 203.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 133, 133, 360, 390, 463, 473, 473, 474, 479, 479, 483, 483, 484, 484, 486, 486, 487, 488, 504, 504,
582, 582, 618, 618, 619, 619, 620, 620, 663, 663, 664, 664, 679, 684, 730, 730, 732, 736, 741, 742, 742,
743 and 743.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 6.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 603, 604, 742, 743 and 743.
SWC-115 | tx.origin should not be used for authorization, use msg.sender instead on lines 539.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 658.

RABBOGE INU | Security Analysis

CONCLUSION

We have audited the RABBOGE INU project released on January 2023 to discover issues and identify potential
security vulnerabilities in RABBOGE INU Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the RABBOGE INU smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a state variable visibility is not set, weak sources of randomness,
tx.origin as a part of authorization control, and out of bounds array access which the index access expression
can cause an exception in case of the use of an invalid array index value. We recommend to avoid "tx.origin"
issue The tx.origin environment variable has been found to influence a control flow decision. Note that using
"tx.origin" as a security control might cause a situation where a user inadvertently authorizes a smart contract
to perform an action on their behalf. It is recommended to use "msg.sender" instead. We recommend Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

RABBOGE INU | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

RABBOGE INU | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization.
ISSUE

FOUND

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

RABBOGE INU | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

RABBOGE INU | Security Analysis

SMART CONTRACT ANALYSIS

Started Friday Jan 06 2023 17:59:28 GMT+0000 (Coordinated Universal Time)

Finished Saturday Jan 07 2023 23:54:43 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File RABBOGEINU.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 133

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

132 uint8 constant private _decimals = 5;

133 uint256 constant private _tTotal = startingSupply * (10 ** _decimals);

134

135 struct Fees {

136 uint16 buyFee;

137

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 133

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

132 uint8 constant private _decimals = 5;

133 uint256 constant private _tTotal = startingSupply * (10 ** _decimals);

134

135 struct Fees {

136 uint16 buyFee;

137

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 360

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

359 if (_allowances[sender][msg.sender] != type(uint256).max) {

360 _allowances[sender][msg.sender] -= amount;

361 }

362

363 return _transfer(sender, recipient, amount);

364

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 390

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

389 if (timeSinceLastPair != 0) {

390 require(block.timestamp - timeSinceLastPair > 3 days, "3 Day cooldown.");

391 }

392 require(!lpPairs[pair], "Pair already added to list.");

393 lpPairs[pair] = true;

394

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 463

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

462 "Cannot exceed maximums.");

463 require(buyFee + sellFee <= maxRoundtripTax, "Cannot exceed roundtrip maximum.");

464 _taxRates.buyFee = buyFee;

465 _taxRates.sellFee = sellFee;

466 _taxRates.transferFee = transferFee;

467

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 473

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

472 _ratios.marketing = marketing;

473 _ratios.total = rewards + staking + marketing;

474 uint256 total = _taxRates.buyFee + _taxRates.sellFee;

475 require(_ratios.total <= total, "Cannot exceed sum of buy and sell fees.");

476 }

477

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 473

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

472 _ratios.marketing = marketing;

473 _ratios.total = rewards + staking + marketing;

474 uint256 total = _taxRates.buyFee + _taxRates.sellFee;

475 require(_ratios.total <= total, "Cannot exceed sum of buy and sell fees.");

476 }

477

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 474

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

473 _ratios.total = rewards + staking + marketing;

474 uint256 total = _taxRates.buyFee + _taxRates.sellFee;

475 require(_ratios.total <= total, "Cannot exceed sum of buy and sell fees.");

476 }

477

478

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 479

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

478 function getTokenAmountAtPriceImpact(uint256 priceImpactInHundreds) external view

returns (uint256) {

479 return((balanceOf(lpPair) * priceImpactInHundreds) / masterTaxDivisor);

480 }

481

482 function setSwapSettings(uint256 thresholdPercent, uint256 thresholdDivisor,

uint256 amountPercent, uint256 amountDivisor) external onlyOwner {

483

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 479

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

478 function getTokenAmountAtPriceImpact(uint256 priceImpactInHundreds) external view

returns (uint256) {

479 return((balanceOf(lpPair) * priceImpactInHundreds) / masterTaxDivisor);

480 }

481

482 function setSwapSettings(uint256 thresholdPercent, uint256 thresholdDivisor,

uint256 amountPercent, uint256 amountDivisor) external onlyOwner {

483

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 483

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

482 function setSwapSettings(uint256 thresholdPercent, uint256 thresholdDivisor,

uint256 amountPercent, uint256 amountDivisor) external onlyOwner {

483 swapThreshold = (_tTotal * thresholdPercent) / thresholdDivisor;

484 swapAmount = (_tTotal * amountPercent) / amountDivisor;

485 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

486 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

487

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 483

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

482 function setSwapSettings(uint256 thresholdPercent, uint256 thresholdDivisor,

uint256 amountPercent, uint256 amountDivisor) external onlyOwner {

483 swapThreshold = (_tTotal * thresholdPercent) / thresholdDivisor;

484 swapAmount = (_tTotal * amountPercent) / amountDivisor;

485 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

486 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

487

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 484

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

483 swapThreshold = (_tTotal * thresholdPercent) / thresholdDivisor;

484 swapAmount = (_tTotal * amountPercent) / amountDivisor;

485 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

486 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

487 require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total

supply.");

488

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 484

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

483 swapThreshold = (_tTotal * thresholdPercent) / thresholdDivisor;

484 swapAmount = (_tTotal * amountPercent) / amountDivisor;

485 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

486 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

487 require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total

supply.");

488

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 486

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

485 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

486 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

487 require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total

supply.");

488 require(swapThreshold >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of

total supply.");

489 }

490

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 486

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

485 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

486 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

487 require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total

supply.");

488 require(swapThreshold >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of

total supply.");

489 }

490

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 487

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

486 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

487 require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total

supply.");

488 require(swapThreshold >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of

total supply.");

489 }

490

491

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 488

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

487 require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total

supply.");

488 require(swapThreshold >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of

total supply.");

489 }

490

491 function setPriceImpactSwapAmount(uint256 priceImpactSwapPercent) external

onlyOwner {

492

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 504

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

503 function setRewardsProperties(uint256 _minPeriod, uint256 _minReflection, uint256

minReflectionMultiplier) external onlyOwner {

504 _minReflection = _minReflection * 10**minReflectionMultiplier;

505 cashier.setRewardsProperties(_minPeriod, _minReflection);

506 }

507

508

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 504

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

503 function setRewardsProperties(uint256 _minPeriod, uint256 _minReflection, uint256

minReflectionMultiplier) external onlyOwner {

504 _minReflection = _minReflection * 10**minReflectionMultiplier;

505 cashier.setRewardsProperties(_minPeriod, _minReflection);

506 }

507

508

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 582

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

581 uint256 swapAmt = swapAmount;

582 if (piContractSwapsEnabled) { swapAmt = (balanceOf(lpPair) * piSwapPercent) /

masterTaxDivisor; }

583 if (contractTokenBalance >= swapAmt) { contractTokenBalance = swapAmt; }

584 contractSwap(contractTokenBalance);

585 }

586

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 582

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

581 uint256 swapAmt = swapAmount;

582 if (piContractSwapsEnabled) { swapAmt = (balanceOf(lpPair) * piSwapPercent) /

masterTaxDivisor; }

583 if (contractTokenBalance >= swapAmt) { contractTokenBalance = swapAmt; }

584 contractSwap(contractTokenBalance);

585 }

586

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 618

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

617 bool success;

618 uint256 rewardsBalance = (amtBalance * ratios.rewards) / ratios.total;

619 uint256 stakingBalance = (amtBalance * ratios.staking) / ratios.total;

620 uint256 marketingBalance = amtBalance - (rewardsBalance + stakingBalance);

621

622

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 618

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

617 bool success;

618 uint256 rewardsBalance = (amtBalance * ratios.rewards) / ratios.total;

619 uint256 stakingBalance = (amtBalance * ratios.staking) / ratios.total;

620 uint256 marketingBalance = amtBalance - (rewardsBalance + stakingBalance);

621

622

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 619

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

618 uint256 rewardsBalance = (amtBalance * ratios.rewards) / ratios.total;

619 uint256 stakingBalance = (amtBalance * ratios.staking) / ratios.total;

620 uint256 marketingBalance = amtBalance - (rewardsBalance + stakingBalance);

621

622 if (ratios.rewards > 0) {

623

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 619

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

618 uint256 rewardsBalance = (amtBalance * ratios.rewards) / ratios.total;

619 uint256 stakingBalance = (amtBalance * ratios.staking) / ratios.total;

620 uint256 marketingBalance = amtBalance - (rewardsBalance + stakingBalance);

621

622 if (ratios.rewards > 0) {

623

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 620

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

619 uint256 stakingBalance = (amtBalance * ratios.staking) / ratios.total;

620 uint256 marketingBalance = amtBalance - (rewardsBalance + stakingBalance);

621

622 if (ratios.rewards > 0) {

623 try cashier.load{value: rewardsBalance}() {} catch {}

624

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 620

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

619 uint256 stakingBalance = (amtBalance * ratios.staking) / ratios.total;

620 uint256 marketingBalance = amtBalance - (rewardsBalance + stakingBalance);

621

622 if (ratios.rewards > 0) {

623 try cashier.load{value: rewardsBalance}() {} catch {}

624

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 663

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

662 allowedPresaleExclusion = false;

663 swapThreshold = (balanceOf(lpPair) * 10) / 10000;

664 swapAmount = (balanceOf(lpPair) * 30) / 10000;

665 }

666

667

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 663

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

662 allowedPresaleExclusion = false;

663 swapThreshold = (balanceOf(lpPair) * 10) / 10000;

664 swapAmount = (balanceOf(lpPair) * 30) / 10000;

665 }

666

667

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 664

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

663 swapThreshold = (balanceOf(lpPair) * 10) / 10000;

664 swapAmount = (balanceOf(lpPair) * 30) / 10000;

665 }

666

667 function finalizeTransfer(address from, address to, uint256 amount, bool buy, bool

sell, bool other) internal returns (bool) {

668

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 664

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

663 swapThreshold = (balanceOf(lpPair) * 10) / 10000;

664 swapAmount = (balanceOf(lpPair) * 30) / 10000;

665 }

666

667 function finalizeTransfer(address from, address to, uint256 amount, bool buy, bool

sell, bool other) internal returns (bool) {

668

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 679

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

678

679 _tOwned[from] -= amount;

680 uint256 amountReceived = amount;

681 if (takeFee) {

682 amountReceived = takeTaxes(from, amount, buy, sell, other);

683

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 684

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

683 }

684 _tOwned[to] += amountReceived;

685 emit Transfer(from, to, amountReceived);

686 if (!_hasLiqBeenAdded) {

687 _checkLiquidityAdd(from, to);

688

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 730

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

729 || block.chainid == 56)) { currentFee = 4500; }

730 uint256 feeAmount = amount * currentFee / masterTaxDivisor;

731 if (feeAmount > 0) {

732 _tOwned[address(this)] += feeAmount;

733 emit Transfer(from, address(this), feeAmount);

734

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 730

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

729 || block.chainid == 56)) { currentFee = 4500; }

730 uint256 feeAmount = amount * currentFee / masterTaxDivisor;

731 if (feeAmount > 0) {

732 _tOwned[address(this)] += feeAmount;

733 emit Transfer(from, address(this), feeAmount);

734

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 732

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

731 if (feeAmount > 0) {

732 _tOwned[address(this)] += feeAmount;

733 emit Transfer(from, address(this), feeAmount);

734 }

735

736

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 736

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

735

736 return amount - feeAmount;

737 }

738

739 function multiSendTokens(address[] memory accounts, uint256[] memory amounts)

external onlyOwner {

740

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 741

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

740 require(accounts.length == amounts.length, "Lengths do not match.");

741 for (uint16 i = 0; i < accounts.length; i++) {

742 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

743 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

744 }

745

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 742

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

741 for (uint16 i = 0; i < accounts.length; i++) {

742 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

743 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

744 }

745 }

746

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 742

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

741 for (uint16 i = 0; i < accounts.length; i++) {

742 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

743 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

744 }

745 }

746

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 743

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

742 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

743 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

744 }

745 }

746

747

RABBOGE INU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 743

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RABBOGEINU.sol

Locations

742 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

743 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

744 }

745 }

746

747

RABBOGE INU | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 6

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.9.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- RABBOGEINU.sol

Locations

5 // SPDX-License-Identifier: MIT

6 pragma solidity >=0.6.0 <0.9.0;

7

8 interface IERC20 {

9 function totalSupply() external view returns (uint256);

10

RABBOGE INU | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 118

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_tOwned" is internal.
Other possible visibility settings are public and private.

Source File
- RABBOGEINU.sol

Locations

117 contract RABBOGEINU is IERC20 {

118 mapping (address => uint256) _tOwned;

119 mapping (address => bool) lpPairs;

120 uint256 private timeSinceLastPair = 0;

121 mapping (address => mapping (address => uint256)) _allowances;

122

RABBOGE INU | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 119

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "lpPairs" is internal.
Other possible visibility settings are public and private.

Source File
- RABBOGEINU.sol

Locations

118 mapping (address => uint256) _tOwned;

119 mapping (address => bool) lpPairs;

120 uint256 private timeSinceLastPair = 0;

121 mapping (address => mapping (address => uint256)) _allowances;

122 mapping (address => bool) private _isExcludedFromProtection;

123

RABBOGE INU | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 121

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_allowances" is
internal. Other possible visibility settings are public and private.

Source File
- RABBOGEINU.sol

Locations

120 uint256 private timeSinceLastPair = 0;

121 mapping (address => mapping (address => uint256)) _allowances;

122 mapping (address => bool) private _isExcludedFromProtection;

123 mapping (address => bool) private _isExcludedFromFees;

124 mapping (address => bool) private _isExcludedFromDividends;

125

RABBOGE INU | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 189

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "cashier" is internal.
Other possible visibility settings are public and private.

Source File
- RABBOGEINU.sol

Locations

188

189 Cashier cashier;

190 uint256 cashierGas = 300000;

191

192 bool inSwap;

193

RABBOGE INU | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 190

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "cashierGas" is
internal. Other possible visibility settings are public and private.

Source File
- RABBOGEINU.sol

Locations

189 Cashier cashier;

190 uint256 cashierGas = 300000;

191

192 bool inSwap;

193 bool public contractSwapEnabled = false;

194

RABBOGE INU | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 192

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwap" is internal.
Other possible visibility settings are public and private.

Source File
- RABBOGEINU.sol

Locations

191

192 bool inSwap;

193 bool public contractSwapEnabled = false;

194 uint256 public swapThreshold;

195 uint256 public swapAmount;

196

RABBOGE INU | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 203

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "protections" is
internal. Other possible visibility settings are public and private.

Source File
- RABBOGEINU.sol

Locations

202 bool public _hasLiqBeenAdded = false;

203 Protections protections;

204

205 modifier inSwapFlag() {

206 inSwap = true;

207

RABBOGE INU | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 539

low SEVERITY
The tx.origin environment variable has been found to influence a control flow decision. Note that using
"tx.origin" as a security control might cause a situation where a user inadvertently authorizes a smart contract
to perform an action on their behalf. It is recommended to use "msg.sender" instead.

Source File
- RABBOGEINU.sol

Locations

538 && to != _owner

539 && tx.origin != _owner

540 && !_liquidityHolders[to]

541 && !_liquidityHolders[from]

542 && to != DEAD

543

RABBOGE INU | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 603

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- RABBOGEINU.sol

Locations

602 address[] memory path = new address[](2);

603 path[0] = address(this);

604 path[1] = dexRouter.WETH();

605

606 try dexRouter.swapExactTokensForETHSupportingFeeOnTransferTokens(

607

RABBOGE INU | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 604

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- RABBOGEINU.sol

Locations

603 path[0] = address(this);

604 path[1] = dexRouter.WETH();

605

606 try dexRouter.swapExactTokensForETHSupportingFeeOnTransferTokens(

607 contractTokenBalance,

608

RABBOGE INU | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 742

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- RABBOGEINU.sol

Locations

741 for (uint16 i = 0; i < accounts.length; i++) {

742 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

743 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

744 }

745 }

746

RABBOGE INU | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 743

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- RABBOGEINU.sol

Locations

742 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

743 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

744 }

745 }

746

747

RABBOGE INU | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 743

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- RABBOGEINU.sol

Locations

742 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

743 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

744 }

745 }

746

747

RABBOGE INU | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 658

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- RABBOGEINU.sol

Locations

657 }

658 try protections.setLaunch(lpPair, uint32(block.number), uint64(block.timestamp),

_decimals) {} catch {}

659 try cashier.initialize() {} catch {}

660 tradingEnabled = true;

661 processReflect = true;

662

RABBOGE INU | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

RABBOGE INU | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

