
hi Dollar

Smart Contract
Audit Report

22 Oct 2021

hi Dollar | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

hi Dollar | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

hi Dollar HI Binance Smart Chain

| Addresses

Contract address 0x77087ab5df23cfb52449a188e80e9096201c2097

Contract deployer address 0x7E700B8da2d3E1082F4F5a94F91532bdc6B89066

| Project Website

https://hi.com/

| Codebase

https://bscscan.com/address/0x77087ab5df23cfb52449a188e80e9096201c2097#code

https://hi.com/
https://bscscan.com/address/0x77087ab5df23cfb52449a188e80e9096201c2097#code

hi Dollar | Security Analysis

SUMMARY

hi Reserve Limited (“Hi”) and its affiliates are creating the hi platform. All references to “Hi” in this document
refer to the issuing entity and all references to “hi” in this document refer to the platform, unless otherwise
expressly stated. Our aim is to bring an innovative range of mobile and online financial services to eligible
users, leveraging blockchain technology. We intend to operate across the globe, with a strong focus on
financial inclusion, security and compliance.

| Contract Summary

Documentation Quality

hi Dollar provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by hi Dollar with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 735.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 397, 416, 438, 471, 473, 494, 495, 520, 522, 633, 725, 726, 726, 759, 762, 783, 783, 789, 789, 789,
793, 1176, 1176, 1178, 1186, 1194 and 726.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 11, 37, 129,
213, 242, 599 and 642.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 794.

hi Dollar | Security Analysis

CONCLUSION

We have audited the hi Dollar project released on October 2021 to discover issues and identify potential
security vulnerabilities in the hi Dollar Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the hi Dollar smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a state variable visibility is not set, and out-of-bounds array access
which the index access expression can cause an exception in case of the use of an invalid array index value.
The current pragma Solidity directive is ""^0.8.0"". Specifying a fixed compiler version is recommended to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. For state variable visibility is not set, it is best practice to set the
visibility of state variables explicitly. The default visibility for "approverCount" is internal. Other possible
visibility settings are public and private.

hi Dollar | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

hi Dollar | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

hi Dollar | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

hi Dollar | Security Analysis

SMART CONTRACT ANALYSIS

Started Thursday Oct 21 2021 02:13:29 GMT+0000 (Coordinated Universal Time)

Finished Friday Oct 22 2021 18:05:14 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File hiDollar.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

hi Dollar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 397

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- hiDollar.sol

Locations

396 unchecked {

397 _approve(sender, _msgSender(), currentAllowance - amount);

398 }

399

400 return true;

401

hi Dollar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 416

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- hiDollar.sol

Locations

415 function increaseAllowance(address spender, uint256 addedValue) public virtual

returns (bool) {

416 _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);

417 return true;

418 }

419

420

hi Dollar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 438

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- hiDollar.sol

Locations

437 unchecked {

438 _approve(_msgSender(), spender, currentAllowance - subtractedValue);

439 }

440

441 return true;

442

hi Dollar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 471

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- hiDollar.sol

Locations

470 unchecked {

471 _balances[sender] = senderBalance - amount;

472 }

473 _balances[recipient] += amount;

474

475

hi Dollar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 473

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- hiDollar.sol

Locations

472 }

473 _balances[recipient] += amount;

474

475 emit Transfer(sender, recipient, amount);

476

477

hi Dollar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 494

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- hiDollar.sol

Locations

493

494 _totalSupply += amount;

495 _balances[account] += amount;

496 emit Transfer(address(0), account, amount);

497

498

hi Dollar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 495

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- hiDollar.sol

Locations

494 _totalSupply += amount;

495 _balances[account] += amount;

496 emit Transfer(address(0), account, amount);

497

498 _afterTokenTransfer(address(0), account, amount);

499

hi Dollar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 520

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- hiDollar.sol

Locations

519 unchecked {

520 _balances[account] = accountBalance - amount;

521 }

522 _totalSupply -= amount;

523

524

hi Dollar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 522

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- hiDollar.sol

Locations

521 }

522 _totalSupply -= amount;

523

524 emit Transfer(account, address(0), amount);

525

526

hi Dollar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 633

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- hiDollar.sol

Locations

632 unchecked {

633 _approve(account, _msgSender(), currentAllowance - amount);

634 }

635 _burn(account, amount);

636 }

637

hi Dollar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 725

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- hiDollar.sol

Locations

724 uint256 public constant RATIO_DECIMALS = 4; /** ratio decimals */

725 uint256 public constant RATIO_PRECISION = 10 ** RATIO_DECIMALS /** ratio precision?

10000 */;

726 uint256 public constant MAX_FEE_RATIO = 1 * RATIO_PRECISION - 1; /** max fee ratio,

100% */

727 uint256 public constant MIN_APPROVE_RATIO = 6666 ; /** min approve ratio, 66.66% */

728

729

hi Dollar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 726

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- hiDollar.sol

Locations

725 uint256 public constant RATIO_PRECISION = 10 ** RATIO_DECIMALS /** ratio precision?

10000 */;

726 uint256 public constant MAX_FEE_RATIO = 1 * RATIO_PRECISION - 1; /** max fee ratio,

100% */

727 uint256 public constant MIN_APPROVE_RATIO = 6666 ; /** min approve ratio, 66.66% */

728

729 enum ApprovedStatus { NONE, STARTED, APPROVED, OPPOSED }

730

hi Dollar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 726

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- hiDollar.sol

Locations

725 uint256 public constant RATIO_PRECISION = 10 ** RATIO_DECIMALS /** ratio precision?

10000 */;

726 uint256 public constant MAX_FEE_RATIO = 1 * RATIO_PRECISION - 1; /** max fee ratio,

100% */

727 uint256 public constant MIN_APPROVE_RATIO = 6666 ; /** min approve ratio, 66.66% */

728

729 enum ApprovedStatus { NONE, STARTED, APPROVED, OPPOSED }

730

hi Dollar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 759

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- hiDollar.sol

Locations

758 Approvers[account] = true;

759 approverCount += 1;

760 } else {

761 delete Approvers[account];

762 approverCount -= 1;

763

hi Dollar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 762

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- hiDollar.sol

Locations

761 delete Approvers[account];

762 approverCount -= 1;

763 }

764 emit ApproverChanged(account, approve);

765 }

766

hi Dollar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 783

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- hiDollar.sol

Locations

782

783 return approvedCount * RATIO_PRECISION / approverCount >= MIN_APPROVE_RATIO;

784 }

785

786 function _isProposalOpposed(uint256 opposedCount) internal view returns(bool) {

787

hi Dollar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 783

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- hiDollar.sol

Locations

782

783 return approvedCount * RATIO_PRECISION / approverCount >= MIN_APPROVE_RATIO;

784 }

785

786 function _isProposalOpposed(uint256 opposedCount) internal view returns(bool) {

787

hi Dollar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 789

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- hiDollar.sol

Locations

788

789 return opposedCount * RATIO_PRECISION / approverCount > RATIO_PRECISION -

MIN_APPROVE_RATIO;

790 }

791

792 function _existIn(address account, address[] memory accounts) internal pure

returns(bool) {

793

hi Dollar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 789

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- hiDollar.sol

Locations

788

789 return opposedCount * RATIO_PRECISION / approverCount > RATIO_PRECISION -

MIN_APPROVE_RATIO;

790 }

791

792 function _existIn(address account, address[] memory accounts) internal pure

returns(bool) {

793

hi Dollar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 789

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- hiDollar.sol

Locations

788

789 return opposedCount * RATIO_PRECISION / approverCount > RATIO_PRECISION -

MIN_APPROVE_RATIO;

790 }

791

792 function _existIn(address account, address[] memory accounts) internal pure

returns(bool) {

793

hi Dollar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 793

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- hiDollar.sol

Locations

792 function _existIn(address account, address[] memory accounts) internal pure

returns(bool) {

793 for (uint256 i = 0; i < accounts.length; i++) {

794 if (account == accounts[i]) return true;

795 }

796 return false;

797

hi Dollar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1176

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- hiDollar.sol

Locations

1175 require(amount > 0, "hiDollar: non-positive amount not allowed");

1176 uint256 fee = amount * _getUserFeeRatio(sender) / RATIO_PRECISION;

1177 if (fee > 0) {

1178 require(balanceOf(sender) >= amount + fee, "hiDollar: insufficient balance");

1179 }

1180

hi Dollar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1176

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- hiDollar.sol

Locations

1175 require(amount > 0, "hiDollar: non-positive amount not allowed");

1176 uint256 fee = amount * _getUserFeeRatio(sender) / RATIO_PRECISION;

1177 if (fee > 0) {

1178 require(balanceOf(sender) >= amount + fee, "hiDollar: insufficient balance");

1179 }

1180

hi Dollar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1178

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- hiDollar.sol

Locations

1177 if (fee > 0) {

1178 require(balanceOf(sender) >= amount + fee, "hiDollar: insufficient balance");

1179 }

1180

1181 super._transfer(sender, recipient, amount);

1182

hi Dollar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1186

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- hiDollar.sol

Locations

1185 super._transfer(sender, address(this), fee);

1186 fees += fee;

1187 emit FrictionFee(sender, fee);

1188 }

1189 }

1190

hi Dollar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 1194

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- hiDollar.sol

Locations

1193 require(amount <= fees, "hiDollar: the amount exceeds the collectable fees");

1194 fees -= amount;

1195 super._transfer(address(this), msg.sender, amount);

1196 emit FeeCollected(feeCollector, amount);

1197 return true;

1198

hi Dollar | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 726

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- hiDollar.sol

Locations

725 uint256 public constant RATIO_PRECISION = 10 ** RATIO_DECIMALS /** ratio precision?

10000 */;

726 uint256 public constant MAX_FEE_RATIO = 1 * RATIO_PRECISION - 1; /** max fee ratio,

100% */

727 uint256 public constant MIN_APPROVE_RATIO = 6666 ; /** min approve ratio, 66.66% */

728

729 enum ApprovedStatus { NONE, STARTED, APPROVED, OPPOSED }

730

hi Dollar | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 11

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- hiDollar.sol

Locations

10

11 pragma solidity ^0.8.0;

12

13 /**

14 * @dev Provides information about the current execution context, including the

15

hi Dollar | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 37

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- hiDollar.sol

Locations

36

37 pragma solidity ^0.8.0;

38

39

40 /**

41

hi Dollar | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 129

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- hiDollar.sol

Locations

128

129 pragma solidity ^0.8.0;

130

131 /**

132 * @dev Interface of the ERC20 standard as defined in the EIP.

133

hi Dollar | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 213

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- hiDollar.sol

Locations

212

213 pragma solidity ^0.8.0;

214

215

216 /**

217

hi Dollar | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 242

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- hiDollar.sol

Locations

241

242 pragma solidity ^0.8.0;

243

244

245

246

hi Dollar | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 599

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- hiDollar.sol

Locations

598

599 pragma solidity ^0.8.0;

600

601

602

603

hi Dollar | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 642

low SEVERITY
The current pragma Solidity directive is ""^0.8.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- hiDollar.sol

Locations

641

642 pragma solidity ^0.8.2;

643

644 /**

645 * @see

https://docs.soliditylang.org/en/latest/contracts.html?highlight=experimental#return-

variables

646

hi Dollar | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 735

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "approverCount" is
internal. Other possible visibility settings are public and private.

Source File
- hiDollar.sol

Locations

734 mapping (address => bool) public Approvers;

735 uint256 approverCount;

736

737 mapping (address => bool) public Proposers;

738

739

hi Dollar | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 794

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- hiDollar.sol

Locations

793 for (uint256 i = 0; i < accounts.length; i++) {

794 if (account == accounts[i]) return true;

795 }

796 return false;

797 }

798

hi Dollar | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

hi Dollar | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

