
Safemoon chain

Smart Contract
Audit Report

31 Jan 2023

Safemoon chain | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Safemoon chain | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Safemoon chainn SMC Binance Smart Chain

| Addresses

Contract address 0xef4429cE2C87aa3fDFf5aD910f41dD557382Cc39

Contract deployer address 0xd3Be29D3CeeC37682119cf5B35aaC41543Cd423D

| Project Website

https://www.safemoonchain.org/

| Codebase

https://bscscan.com/address/0xef4429cE2C87aa3fDFf5aD910f41dD557382Cc39#code

https://www.safemoonchain.org/
https://bscscan.com/address/0xef4429cE2C87aa3fDFf5aD910f41dD557382Cc39#code

Safemoon chain | Security Analysis

SUMMARY

Did you Miss Dogechain? & Shibchain? Then you won't want to miss Safemoon Chain. Safemoon Chain will
speed up Blockchain adoption by connecting systems like Internet Web data, Dapps and Web 5 softwares, IOT-
internet of databases, Machine Learning and Artificial Intelligence.

| Contract Summary

Documentation Quality

Safemoon chain provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Safemoon chain with the discovery of
several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 194, 216, 241, 270, 271, 400, 400, 431, 431, 462, 472, 483, 511, 520, 526, 535, 535, 542, 546, 546,
566, 567, 567, 569, 575, 576, 576, 577, 584, 584, 633, 633 and 659.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 7.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 595, 596 and 660.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 511 and 640.

Safemoon chain | Security Analysis

CONCLUSION

We have audited the Safemoon chain project released on January 2023 to discover issues and identify
potential security vulnerabilities in Safemoon chain Project. This process is used to find technical issues and
security loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the Safemoon chain smart contract code do not pose a considerable risk. The writing of
the contract is close to the standard of writing contracts in general. The low-risk issues found are some
arithmetic operation issues, a floating pragma set, weak sources of randomness, and out of bounds array
access which the index access expression can cause an exception in case of the use of an invalid array index
value. We recommend to Don't using any of those environment variables as sources of randomness and being
aware that the use of these variables introduces a certain level of trust in miners.

Safemoon chain | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Safemoon chain | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Safemoon chain | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Safemoon chain | Security Analysis

SMART CONTRACT ANALYSIS

Started Monday Jan 30 2023 19:17:48 GMT+0000 (Coordinated Universal Time)

Finished Tuesday Jan 31 2023 21:25:08 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File SafeMoonChain.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 194

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

193 require(currentAllowance >= amount, "BEP20: transfer amount exceeds allowance");

194 _approve(sender, _msgSender(), currentAllowance - amount);

195

196 return true;

197 }

198

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 216

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

215 {

216 _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);

217 return true;

218 }

219

220

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 241

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

240 require(currentAllowance >= subtractedValue, "BEP20: decreased allowance below

zero");

241 _approve(_msgSender(), spender, currentAllowance - subtractedValue);

242

243 return true;

244 }

245

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 270

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

269 require(senderBalance >= amount, "BEP20: transfer amount exceeds balance");

270 _balances[sender] = senderBalance - amount;

271 _balances[recipient] += amount;

272

273 emit Transfer(sender, recipient, amount);

274

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 271

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

270 _balances[sender] = senderBalance - amount;

271 _balances[recipient] += amount;

272

273 emit Transfer(sender, recipient, amount);

274 }

275

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 400

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

399

400 uint256 public tokenLiquidityThreshold = 21e3 * 10**18;

401

402 uint256 public genesis_block;

403 uint256 private deadline = 3;

404

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 400

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

399

400 uint256 public tokenLiquidityThreshold = 21e3 * 10**18;

401

402 uint256 public genesis_block;

403 uint256 private deadline = 3;

404

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 431

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

430 constructor() BEP20("Safemoon chain", "SMC") {

431 _tokengeneration(msg.sender, 21e6 * 10**decimals());

432 exemptFee[msg.sender] = true;

433

434 IRouter _router = IRouter(0x10ED43C718714eb63d5aA57B78B54704E256024E);

435

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 431

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

430 constructor() BEP20("Safemoon chain", "SMC") {

431 _tokengeneration(msg.sender, 21e6 * 10**decimals());

432 exemptFee[msg.sender] = true;

433

434 IRouter _router = IRouter(0x10ED43C718714eb63d5aA57B78B54704E256024E);

435

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 462

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

461 require(currentAllowance >= amount, "BEP20: transfer amount exceeds allowance");

462 _approve(sender, _msgSender(), currentAllowance - amount);

463

464 return true;

465 }

466

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 472

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

471 {

472 _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);

473 return true;

474 }

475

476

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 483

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

482 require(currentAllowance >= subtractedValue, "BEP20: decreased allowance below

zero");

483 _approve(_msgSender(), spender, currentAllowance - subtractedValue);

484

485 return true;

486 }

487

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 511

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

510 !exemptFee[recipient] &&

511 block.number < genesis_block + deadline;

512

513 //set fee to zero if fees in contract are handled or exempted

514 if (_interlock || exemptFee[sender] || exemptFee[recipient])

515

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 520

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

519 feeswap =

520 sellTaxes.liquidity +

521 sellTaxes.marketing;

522 feesum = feeswap;

523 currentTaxes = sellTaxes;

524

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 526

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

525 feeswap =

526 taxes.liquidity +

527 taxes.marketing;

528 feesum = feeswap;

529 currentTaxes = taxes;

530

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 535

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

534

535 fee = (amount * feesum) / 100;

536

537 //send fees if threshold has been reached

538 //don't do this on buys, breaks swap

539

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 535

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

534

535 fee = (amount * feesum) / 100;

536

537 //send fees if threshold has been reached

538 //don't do this on buys, breaks swap

539

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 542

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

541 //rest to recipient

542 super._transfer(sender, recipient, amount - fee);

543 if (fee > 0) {

544 //send the fee to the contract

545 if (feeswap > 0) {

546

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 546

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

545 if (feeswap > 0) {

546 uint256 feeAmount = (amount * feeswap) / 100;

547 super._transfer(sender, address(this), feeAmount);

548 }

549

550

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 546

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

545 if (feeswap > 0) {

546 uint256 feeAmount = (amount * feeswap) / 100;

547 super._transfer(sender, address(this), feeAmount);

548 }

549

550

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 566

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

565 // Split the contract balance into halves

566 uint256 denominator = feeswap * 2;

567 uint256 tokensToAddLiquidityWith = (contractBalance * swapTaxes.liquidity) /

568 denominator;

569 uint256 toSwap = contractBalance - tokensToAddLiquidityWith;

570

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 567

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

566 uint256 denominator = feeswap * 2;

567 uint256 tokensToAddLiquidityWith = (contractBalance * swapTaxes.liquidity) /

568 denominator;

569 uint256 toSwap = contractBalance - tokensToAddLiquidityWith;

570

571

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 567

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

566 uint256 denominator = feeswap * 2;

567 uint256 tokensToAddLiquidityWith = (contractBalance * swapTaxes.liquidity) /

568 denominator;

569 uint256 toSwap = contractBalance - tokensToAddLiquidityWith;

570

571

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 569

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

568 denominator;

569 uint256 toSwap = contractBalance - tokensToAddLiquidityWith;

570

571 uint256 initialBalance = address(this).balance;

572

573

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 575

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

574

575 uint256 deltaBalance = address(this).balance - initialBalance;

576 uint256 unitBalance = deltaBalance / (denominator - swapTaxes.liquidity);

577 uint256 ethToAddLiquidityWith = unitBalance * swapTaxes.liquidity;

578

579

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 576

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

575 uint256 deltaBalance = address(this).balance - initialBalance;

576 uint256 unitBalance = deltaBalance / (denominator - swapTaxes.liquidity);

577 uint256 ethToAddLiquidityWith = unitBalance * swapTaxes.liquidity;

578

579 if (ethToAddLiquidityWith > 0) {

580

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 576

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

575 uint256 deltaBalance = address(this).balance - initialBalance;

576 uint256 unitBalance = deltaBalance / (denominator - swapTaxes.liquidity);

577 uint256 ethToAddLiquidityWith = unitBalance * swapTaxes.liquidity;

578

579 if (ethToAddLiquidityWith > 0) {

580

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 577

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

576 uint256 unitBalance = deltaBalance / (denominator - swapTaxes.liquidity);

577 uint256 ethToAddLiquidityWith = unitBalance * swapTaxes.liquidity;

578

579 if (ethToAddLiquidityWith > 0) {

580 // Add liquidity to pancake

581

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 584

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

583

584 uint256 marketingAmt = unitBalance * 2 * swapTaxes.marketing;

585 if (marketingAmt > 0) {

586 payable(marketingWallet).sendValue(marketingAmt);

587 }

588

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 584

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

583

584 uint256 marketingAmt = unitBalance * 2 * swapTaxes.marketing;

585 if (marketingAmt > 0) {

586 payable(marketingWallet).sendValue(marketingAmt);

587 }

588

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 633

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

632 require(new_amount <= 21e4, "Swap threshold amount should be lower or equal to 1%

of tokens");

633 tokenLiquidityThreshold = new_amount * 10**decimals();

634 }

635

636 function EnableTrading() external onlyOwner {

637

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 633

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

632 require(new_amount <= 21e4, "Swap threshold amount should be lower or equal to 1%

of tokens");

633 tokenLiquidityThreshold = new_amount * 10**decimals();

634 }

635

636 function EnableTrading() external onlyOwner {

637

Safemoon chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 659

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SafeMoonChain.sol

Locations

658 function bulkExemptFee(address[] memory accounts, bool state) external onlyOwner {

659 for (uint256 i = 0; i < accounts.length; i++) {

660 exemptFee[accounts[i]] = state;

661 }

662 }

663

Safemoon chain | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 7

low SEVERITY
The current pragma Solidity directive is ""^0.8.8"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- SafeMoonChain.sol

Locations

6

7 pragma solidity ^0.8.8;

8

9 abstract contract Context {

10 function _msgSender() internal view virtual returns (address) {

11

Safemoon chain | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 595

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SafeMoonChain.sol

Locations

594 address[] memory path = new address[](2);

595 path[0] = address(this);

596 path[1] = router.WETH();

597

598 _approve(address(this), address(router), tokenAmount);

599

Safemoon chain | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 596

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SafeMoonChain.sol

Locations

595 path[0] = address(this);

596 path[1] = router.WETH();

597

598 _approve(address(this), address(router), tokenAmount);

599

600

Safemoon chain | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 660

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SafeMoonChain.sol

Locations

659 for (uint256 i = 0; i < accounts.length; i++) {

660 exemptFee[accounts[i]] = state;

661 }

662 }

663

664

Safemoon chain | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 511

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- SafeMoonChain.sol

Locations

510 !exemptFee[recipient] &&

511 block.number < genesis_block + deadline;

512

513 //set fee to zero if fees in contract are handled or exempted

514 if (_interlock || exemptFee[sender] || exemptFee[recipient])

515

Safemoon chain | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 640

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- SafeMoonChain.sol

Locations

639 providingLiquidity = true;

640 genesis_block = block.number;

641 }

642

643 function updatedeadline(uint256 _deadline) external onlyOwner {

644

Safemoon chain | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Safemoon chain | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

