Stratos

Smart Contract
Audit Report

@ SYSFIXED 10 Jun 2021

£ SYSFIXED

TABLE OF CONTENTS

| Audited Details

- Audited Project
- Blockchain
- Addresses

- Project Website
- Codebase

| Summary

- Contract Summary
- Audit Findings Summary
- Vulnerabilities Summary

| Conclusion

| Audit Results

| Smart Contract Analysis

- Detected Vulnerabilities

| Disclaimer

| About Us

Stratos | Security Analysis

£ SYSFIXED

AUDITED DETAILS

| Audited Project

Stratos | Security Analysis

Project name Token ticker Blockchain
Stratos STOS Ethereum
| Addresses

Contract address

0x08c32b0726C5684024eabe141C50aDe9690bBdcc

Contract deployer address

0xB7573c14A5ECESd92f17569855C64BD43392F8b1

| Project Website

https://www.thestratos.org/

| Codebase

https://etherscan.io/address/0x08¢32b0726C5684024ea6e141C50aDe9690bBdcc#code

https://www.thestratos.org/
https://etherscan.io/address/0x08c32b0726C5684024ea6e141C50aDe9690bBdcc#code

@ SYSFIXED Stratos | Security Analysis

SUMMARY

"Stratos has the main goal of being a solid infrastructure for the entire blockchain industry in a decentralized
manner. Stratos offers blockchain, storage, database, and computation services. Users and developers can
combine the four different services together to customize their own products. "

| Contract Summary

Documentation Quality
Stratos provides a very poor documentation with standard of solidity base code.
e The technical description is provided unclear and disorganized.
Code Quality
The Overall quality of the basecode is poor.
¢ Solidity basecode and rules are unclear and disorganized by Stratos.
Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

e SWC-127 | A developer should not allow a user to assign arbitrary values to function type variables on
lines 862.

e SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 1072.

¢ SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 9, 36, 106,
133,163, 408, 488, 517, 823, 893 and 984.

@ SYSFIXED Stratos | Security Analysis

CONCLUSION

We have audited the Stratos project released in June 2021 to find issues and identify potential security
vulnerabilities in the Stratos project. This process is used to find technical issues and security loopholes that
may be found in smart contracts.

The security audit report gave unsatisfactory results with the discovery of high-risk issues and several other
low-risk issues.

Writing a contract that does not follow the Solidity style guide can pose a significant risk. The high risk
problem we found is the caller can redirect execution to arbitrary bytecode locations. It is possible to redirect
the control flow to arbitrary locations in the code. This may allow an attacker to bypass security controls or
manipulate the business logic of the smart contract. It is recommended to avoid using low-level operations
and assembly to prevent this issue.

Whereas Low risk Issues we found are floating pragmas set on several lines and state variable visibility is not
set. It is best practice to set the visibility of state variables explicitly.

£ SYSFIXED

AUDIT RESULT

Stratos | Security Analysis

Untrusted Callee

addresses.

Article Category Description Result
Functions and state variables visibility should be
- SWC-100 . . - ISSUE
Default Visibility set explicitly. Visibility levels should be specified
SWC-108 . FOUND
consciously.
Integer Overflow If unchecked math is used, all math operations
SWC-101 PASS
and Underflow should be safe from overflows and underflows.
Outdated Compiler It is recommended to use a recent version of the
. SWC-102 L . PASS
Version Solidity compiler.
Contracts should be deployed with the same ISSUE
Floating Pragma SWC-103 compiler version and flags that they have been T
tested thoroughly.
Unchecked Call The return value of a message call should be
SWC-104 PASS
Return Value checked.
Unprotected Ether Due to missing or insufficient access controls,
. SWC-105 . i , PASS
Withdrawal malicious parties can withdraw from the contract.
SELFDESTRUCT The contract should not be self-destructible while it
. SWC-106 . PASS
Instruction has funds belonging to users.
Check effect interaction pattern should be followed
Reentrancy SWC-107)) PASS
if the code performs recursive call.
Uninitialized Uninitialized local storage variables can point to
. SWC-109 i . PASS
Storage Pointer unexpected storage locations in the contract.
L SWC-110 Properly functioning code should never reach a
Assert Violation N PASS
SWC-123 failing assert statement.
Deprecated Solidity o)
. SWC-111 Deprecated built-in functions should never be used. PASS
Functions
Delegate call to Delegatecalls should only be allowed to trusted
SWC-112 PASS

£ SYSFIXED

DoS (Denial of
Service)

Race Conditions

Authorization
through tx.origin

Block values as a
proxy for time

Signature Unique
ID

Incorrect
Constructor Name

Shadowing State
Variable

Weak Sources of
Randomness

Write to Arbitrary
Storage Location

Incorrect
Inheritance Order

Insufficient Gas
Griefing

Arbitrary Jump
Function

SWC-113
SWC-128

SWC-114

SWC-115

SWC-116

SWC-117
SWC-121
SWC-122

SWC-118

SWC-119

SWC-120

SWC-124

SWC-125

SWC-126

SWC-127

Stratos | Security Analysis

Execution of the code should never be blocked by a
specific contract state unless required.

Race Conditions and Transactions Order Dependency
should not be possible.

tx.origin should not be used for authorization.

Block numbers should not be used for time calculations.

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

Constructors are special functions that are called only
once during the contract creation.

State variables should not be shadowed.

Random values should never be generated from Chain
Attributes or be predictable.

The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

When inheriting multiple contracts, especially if they have

identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to

inherit contracts from more /general/ to more /specific/.

Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

As Solidity doesnt support pointer arithmetics, it is

impossible to change such variable to an arbitrary value.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

ISSUE
FOUND

£ SYSFIXED

Stratos | Security Analysis

Typographical A typographical error can occur for example when the intent
SWC-129) o 4 PASS
Error of a defined operation is to sum a number to a variable.
. Malicious actors can use the Right-To-Left-Override unicode
Override control .
h ¢ SWC-130 character to force RTL text rendering and confuse users as PASS
character
to the real intent of a contract.
. SWC-131 Unused variables are allowed in Solidity and they do not pose
Unused variables) o PASS
SWC-135 a direct security issue.
Unexpected Ether Contracts can behave erroneously when they strictly assume
SWC-132 . PASS
balance a specific Ether balance.
Hash Collisions Using abi.encodePacked() with multiple variable length
. SWC-133 . L Ey PASS
Variable arguments can, in certain situations, lead to a hash collision.
Hardcoded gas The transfer() and send() functions forward a fixed amount
SWC-134 PASS
amount of 2300 gas.
Unencrypted It is a common misconception that private type variables
SWC-136 PASS

Private Data

cannot be read.

@ SYSFIXED Stratos | Security Analysis

SMART CONTRACT ANALYSIS

Started Wednesday Jun 09 2021 18:30:55 GMT+0000 (Coordinated Universal Time)
Finished Thursday Jun 10 2021 07:11:52 GMT+0000 (Coordinated Universal Time)
Mode Standard

Main Source File Stratos.sol

| Detected Issues

ID Title Severity | Status
ST THE CALLER CAN REDIRECT EXECUTION TO ARBITRARY high acknowledged
BYTECODE LOCATIONS.

SWC-103 | AFLOATING PRAGMA IS SET. low acknowledged
SWC-103 | AFLOATING PRAGMA IS SET. low acknowledged
SWC-103 | AFLOATING PRAGMA IS SET. low acknowledged
SWC-103 | A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 | AFLOATING PRAGMA IS SET. low acknowledged
SWC-103 | A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 | AFLOATING PRAGMA IS SET. low acknowledged
SWC-103 | AFLOATING PRAGMA IS SET. low acknowledged
SWC-103 | AFLOATING PRAGMA IS SET. low acknowledged
SWC-103 | A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 | AFLOATING PRAGMA IS SET. low acknowledged
SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

@ SYSFIXED Stratos | Security Analysis

SWC-127 | THE CALLER CAN REDIRECT EXECUTION TO

ARBITRARY BYTECODE LOCATIONS.
LINE 862

high SEVERITY

It is possible to redirect the control flow to arbitrary locations in the code. This may allow an attacker to bypass
security controls or manipulate the business logic of the smart contract. Avoid using low-level-operations and
assembly to prevent this issue.

Source File
- Stratos.sol

Locations

861 nodi fier onlyOwer () {

862 requi re(owner () == _nmsgSender(), "Ownable: caller is not the owner");
863 _;

864 }

865

866

@ SYSFIXED Stratos | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 9

low SEVERITY

The current pragma Solidity directive is ""*0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Stratos.sol
Locations
8
9 pragma solidity ~0.8.0;
10
11 &
12 * @lev Provides information about the current execution context, including the
13

@ SYSFIXED Stratos | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 36

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File

- Stratos.sol

Locations
35
36 pragma solidity ~0.8.0;
37
38 /**
39 * @lev String operations.
40

@ SYSFIXED Stratos | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 106

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Stratos.sol
Locations
105
106 pragna solidity ~0.8.0;
107
108 [**
109 * @lev Interface of the ERCL65 standard, as defined in the
110

@ SYSFIXED Stratos | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 133

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Stratos.sol
Locations
132
133 pragna solidity ~0.8.0;
134
135
136 /**
137

@ SYSFIXED Stratos | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 163

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Stratos.sol

Locations

162
163 pragma solidity ~0.8.0;
164
165
166
167

@ SYSFIXED Stratos | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 408

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Stratos.sol
Locations
407
408 pragma solidity ~0.8.0;
409
410 [**
411 * @lev Interface of the ERC20 standard as defined in the ElP.
412

@ SYSFIXED Stratos | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 488

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Stratos.sol
Locations
487
488 pragma solidity ~0.8.0;
489
490
491 [**
492

@ SYSFIXED Stratos | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 517

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Stratos.sol

Locations

516
517 pragma solidity ~0.8.0;
518
519
520
521

@ SYSFIXED Stratos | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 823

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Stratos.sol
Locations
822
823 pragma solidity ~0.8.0;
824
825 [Jes
826 * @lev Contract nodul e which provides a basic access control mechani sm where
827

@ SYSFIXED Stratos | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 893

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Stratos.sol
Locations
892
893 pragma solidity ~0.8.0;
894
895
896 /**
897

@ SYSFIXED Stratos | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 984

low SEVERITY

The current pragma Solidity directive is ""*0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Stratos.sol

Locations

983
984 pragma solidity ~0.8.0;
985
986
987
988

@ SYSFIXED Stratos | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1072

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "MAX_SUPPLY" is
internal. Other possible visibility settings are public and private.

Source File
- Stratos.sol

Locations

1071

1072 uint256 MAX SUPPLY =1 * 10 ** 8 * 10 ** 18; // 100, 000, 000 STOS Token Max Supply
1073

1074 /1 depl oyer address is the default adm n(owner)

1075 /] depl oyer address is the first address with M NT_BURN_ROLE rol e

1076

@ SYSFIXED Stratos | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below - please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

@ SYSFIXED Stratos | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

