
Thetan Gem

Smart Contract
Audit Report

13 Sep 2021

Thetan Gem | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Thetan Gem | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Thetan Gem THG Binance Smart Chain

| Addresses

Contract address 0x9fd87aefe02441b123c3c32466cd9db4c578618f

Contract deployer address 0x28551E18882Ca4aB1f0B5105AbFAf1d8A23E8d3d

| Project Website

https://thetanarena.com/#home

| Codebase

https://bscscan.com/address/0x9fd87aefe02441b123c3c32466cd9db4c578618f#code

https://thetanarena.com/#home
https://bscscan.com/address/0x9fd87aefe02441b123c3c32466cd9db4c578618f#code

Thetan Gem | Security Analysis

SUMMARY

Thetan Arena is an e-sport game based on Blockchain technology. You can gather your friends, form a team,
battle with others, and earn token rewards with just your skills. Thetan Arena's gameplay is designed to revolve
around the combination of your skills and teamwork. Challenge yourself with various game modes: MOBA &
Battle Royale, with monthly updates and attractive rewards. You are guaranteed a gaming experience that's
never known before and certified to lose to anyone the second you pause the fighting too. Gear your heroes up
with a large selection of hundreds of weapons. You'd better devise a good tactic as well because the most
fierce war awaits you right from when the starship drops you off on the battlefield.

| Contract Summary

Documentation Quality

Thetan Gem provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Thetan Gem with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 11, 38, 122,
153, 507, 599, 672, 901, 946, 991, 1040, 1236 and 1283.

Thetan Gem | Security Analysis

CONCLUSION

We have audited the Thetan Gem project released on September 2021 to discover issues and identify potential
security vulnerabilities in Thetan Gem Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The Thetan Gem smart contract code issues do not pose a considerable risk. The writing of the contract is
close to the standard of writing contracts in general. The low-risk issues are some arithmetic operation issues,
and a floating pragma is set. The current pragma Solidity directive is ""^0.8.0"". Specifying a fixed compiler
version is recommended to ensure that the bytecode produced does not vary between builds. This is especially
important if you rely on bytecode-level verification of the code.

Thetan Gem | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

PASS

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

PASS

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Thetan Gem | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Thetan Gem | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Thetan Gem | Security Analysis

SMART CONTRACT ANALYSIS

Started Sunday Sep 12 2021 03:06:41 GMT+0000 (Coordinated Universal Time)

Finished Monday Sep 13 2021 20:31:54 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File THGToken.sol

| Detected Issues

ID Title Severity Status

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

Thetan Gem | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 11

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- THGToken.sol

Locations

10

11 pragma solidity ^0.8.0;

12

13 /**

14 * @dev Provides information about the current execution context, including the

15

Thetan Gem | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 38

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- THGToken.sol

Locations

37

38 pragma solidity ^0.8.0;

39

40 /**

41 * @dev Interface of the ERC20 standard as defined in the EIP.

42

Thetan Gem | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 122

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- THGToken.sol

Locations

121

122 pragma solidity ^0.8.0;

123

124

125 /**

126

Thetan Gem | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 153

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- THGToken.sol

Locations

152

153 pragma solidity ^0.8.0;

154

155

156

157

Thetan Gem | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 507

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- THGToken.sol

Locations

506

507 pragma solidity ^0.8.0;

508

509

510 /**

511

Thetan Gem | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 599

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- THGToken.sol

Locations

598

599 pragma solidity ^0.8.0;

600

601

602 /**

603

Thetan Gem | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 672

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- THGToken.sol

Locations

671

672 pragma solidity ^0.8.0;

673

674 // CAUTION

675 // This version of SafeMath should only be used with Solidity 0.8 or later,

676

Thetan Gem | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 901

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- THGToken.sol

Locations

900

901 pragma solidity ^0.8.0;

902

903 /**

904 * @title Counters

905

Thetan Gem | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 946

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- THGToken.sol

Locations

945

946 pragma solidity ^0.8.0;

947

948 /**

949 * @dev Standard math utilities missing in the Solidity language.

950

Thetan Gem | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 991

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- THGToken.sol

Locations

990

991 pragma solidity ^0.8.0;

992

993

994 /**

995

Thetan Gem | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1040

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- THGToken.sol

Locations

1039

1040 pragma solidity ^0.8.0;

1041

1042

1043

1044

Thetan Gem | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1236

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- THGToken.sol

Locations

1235

1236 pragma solidity ^0.8.0;

1237

1238

1239

1240

Thetan Gem | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1283

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- THGToken.sol

Locations

1282

1283 pragma solidity ^0.8.0;

1284

1285

1286

1287

Thetan Gem | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Thetan Gem | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

