oty
ooo
v

Decimalchain

Smart Contract
Audit Report

@ SYSFIXED 28 Jul 2021

£ SYSFIXED

TABLE OF CONTENTS

| Audited Details

- Audited Project
- Blockchain
- Addresses

- Project Website
- Codebase

| Summary

- Contract Summary
- Audit Findings Summary
- Vulnerabilities Summary

| Conclusion

| Audit Results

| Smart Contract Analysis

- Detected Vulnerabilities

| Disclaimer

| About Us

Decimalchain | Security Analysis

£ SYSFIXED

AUDITED DETAILS

| Audited Project

Decimalchain | Security Analysis

Project name

Token ticker

Blockchain

Decimalchain

DEL

Binance Smart Chain

| Addresses

Contract address

0x9cec03362d759ceca736e5918e8ba7636e2bd64e

Contract deployer address

0xdF889684a4775C765C80ae40b426578d9d6CA037

| Project Website

https://decimalchain.com/

| Codebase

https://bscscan.com/address/0x9cec03362d759ceca736e5918e8ba7636e2bd64e#code

https://decimalchain.com/
https://bscscan.com/address/0x9cec03362d759ceca736e5918e8ba7636e2bd64e#code

@ SYSFIXED Decimalchain | Security Analysis

SUMMARY

Decimal's philosophy is to create a project for people, ordinary users. The Decimal team considers ourselves
“one" with the regular users. We believe we have similar origins and upbringings. Such users, the people, live in
a world oversaturated with information. Drowning in a stream of different and contradictory data, forced to
communicate constantly with strangers. These exchanges are short, in an environment without trust or
authentication, with enormous potential for toxicity and far-reaching consequences. The user's simple human
needs and values run the risk of being attacked and irrevocably alienated. The average person wastes
enormous time, constantly lacking and running out of time, desperately working around the imposing threats.
Often they are overwhelmed by their reality, which, so we are focused on providing everyone with a tool to
withstand external influences. A universal technical solution to the difficulties and challenges of modern
society. A device that is technically complex but easy to use and apply. The consumer should not spend time
mastering our product but solving their immediate problems so that the user doesn't need to develop his
blockchain network and encode transaction logic. Decimal will provide this functionality already "out of the
box." Just generate a wallet and receive or send tokens.

| Contract Summary

Documentation Quality
Decimalchain provides a very good documentation with standard of solidity base code.
e The technical description is provided clearly and structured and also dont have any high risk issue.
Code Quality
The Overall quality of the basecode is standard.

e Standard solidity basecode and rules are already followed by Decimalchain with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

e SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 11, 92, 121,
149, 455, 547, 577, 648, 676 and 706.

@ SYSFIXED Decimalchain | Security Analysis

CONCLUSION

We have audited the Decimalchain project released on July 2021 to discover issues and identify potential
security vulnerabilities in Decimalchain Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The Decimalchain smart contract code issues do not pose a considerable risk. The writing of the contract is
close to the standard of writing contracts in general. The low-risk issues found some floating pragma is set.
The current pragma Solidity directive is ""*0.8.0"". Specifying a fixed compiler version is recommended to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

@‘S\FSFHEU Decimalchain | Security Analysis

AUDIT RESULT

Article Category Description Result
SWC-100 Functions and state variables visibility should be
Default Visibility SWC-108 set explicitly. Visibility levels should be specified PASS
consciously.
Integer Overflow If unchecked math is used, all math operations
SWC-101 PASS
and Underflow should be safe from overflows and underflows.
Outdated Compiler It is recommended to use a recent version of the
. SWC-102 L . PASS
Version Solidity compiler.
Contracts should be deployed with the same ISSUE
Floating Pragma SWC-103 compiler version and flags that they have been T
tested thoroughly.
Unchecked Call The return value of a message call should be
SWC-104 PASS
Return Value checked.
Unprotected Ether Due to missing or insufficient access controls,
. SWC-105 . i , PASS
Withdrawal malicious parties can withdraw from the contract.
SELFDESTRUCT The contract should not be self-destructible while it
. SWC-106 . PASS
Instruction has funds belonging to users.

Check effect interaction pattern should be followed
Reentrancy SWC-107 . . PASS
if the code performs recursive call.

Uninitialized Uninitialized local storage variables can point to
. SWC-109 i . PASS
Storage Pointer unexpected storage locations in the contract.
L SWC-110 Properly functioning code should never reach a
Assert Violation PASS

SWC-123 failing assert statement.

Deprecated Solidity

. SWC-111 Deprecated built-in functions should never be used. PASS
Functions

Delegate call to Delegatecalls should only be allowed to trusted
SWC-112

PASS
Untrusted Callee addresses.

£ SYSFIXED

DoS (Denial of
Service)

Race Conditions

Authorization
through tx.origin

Block values as a
proxy for time

Signature Unique
ID

Incorrect
Constructor Name

Shadowing State
Variable

Weak Sources of
Randomness

Write to Arbitrary
Storage Location

Incorrect
Inheritance Order

Insufficient Gas
Griefing

Arbitrary Jump
Function

SWC-113
SWC-128

SWC-114

SWC-115

SWC-116

SWC-117
SWC-121
SWC-122

SWC-118

SWC-119

SWC-120

SWC-124

SWC-125

SWC-126

SWC-127

Decimalchain | Security Analysis

Execution of the code should never be blocked by a specific
contract state unless required.

Race Conditions and Transactions Order Dependency
should not be possible.

tx.origin should not be used for authorization.

Block numbers should not be used for time calculations.

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

Constructors are special functions that are called only once
during the contract creation.

State variables should not be shadowed.

Random values should never be generated from Chain
Attributes or be predictable.

The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

£ SYSFIXED

Decimalchain | Security Analysis

Typographical A typographical error can occur for example when the intent
SWC-129) o 4 PASS
Error of a defined operation is to sum a number to a variable.
. Malicious actors can use the Right-To-Left-Override unicode
Override control .
h ¢ SWC-130 character to force RTL text rendering and confuse users as PASS
character
to the real intent of a contract.
. SWC-131 Unused variables are allowed in Solidity and they do not pose
Unused variables) o PASS
SWC-135 a direct security issue.
Unexpected Ether Contracts can behave erroneously when they strictly assume
SWC-132 . PASS
balance a specific Ether balance.
Hash Collisions Using abi.encodePacked() with multiple variable length
. SWC-133 . L Ey PASS
Variable arguments can, in certain situations, lead to a hash collision.
Hardcoded gas The transfer() and send() functions forward a fixed amount
SWC-134 PASS
amount of 2300 gas.
Unencrypted It is a common misconception that private type variables
SWC-136 PASS

Private Data

cannot be read.

@sﬁﬂxm Decimalchain | Security Analysis

SMART CONTRACT ANALYSIS

Started Tuesday Jul 27 2021 16:01:38 GMT+0000 (Coordinated Universal Time)
Finished Wednesday Jul 28 2021 02:04:35 GMT+0000 (Coordinated Universal Time)
Mode Standard

Main Source File DERC20.sol

| Detected Issues

ID Title Severity Status

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

@‘S\FSFHEU Decimalchain | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 11

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- DERC20.s0l
Locations
10
11 pragme solidity ~0.8.0;
12
13 &%
14 * @lev Interface of the ERC20 standard as defined in the ElP.
15

@‘S\FSFHEU Decimalchain | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 92

low SEVERITY

The current pragma Solidity directive is ""*0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- DERC20.s0l
Locations
91
92 pragma solidity ~0.8.0;
93
94 &%
95 * @lev Interface for the optional netadata functions fromthe ERC20 standard.
96

@‘S\FSFHEU Decimalchain | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 121

low SEVERITY

The current pragma Solidity directive is ""*0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- DERC20.s0l
Locations
120
121 pragna solidity ~0.8.0;
122
123 [
124 * @lev Provides information about the current execution context, including the
125

@‘S\FSFHEU Decimalchain | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 149

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- DERC20.so0l

Locations

148
149 pragma solidity ~0.8.0;
150
151
152
153

@‘S\FSFHEU Decimalchain | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 455

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- DERC20.sol
Locations
454
455 pragma solidity ~0.8.0;
456
457 | **
458 * @lev Contract nodul e which allows children to inplenment an energency stop
459

@‘S\FSFHEU Decimalchain | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 547

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- DERC20.so0l
Locations
546
547 pragma solidity ~0.8.0;
548
549
550 /**
551

@‘S\FSFHEU Decimalchain | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 577

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File

- DERC20.sol

Locations
576
577 pragma solidity ~0.8.0;
578
579 [**
580 * @lev String operations.
581

@‘S\FSFHEU Decimalchain | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 648

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- DERC20.sol
Locations
647
648 pragma solidity ~0.8.0;
649
650 [Jes
651 * @lev Interface of the ERCL65 standard, as defined in the
652

@‘S\FSFHEU Decimalchain | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 676

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- DERC20.sol
Locations
675
676 pragma solidity ~0.8.0;
677
678 /**
679 * @lev | nplenentation of the {IERCL65} interface.
680

@‘S\FSFHEU Decimalchain | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 706

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- DERC20.so0l

Locations

705
706 pragma solidity ~0.8.0;
707
708
709
710

@S\FSHREU Decimalchain | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below - please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

@S\FSHREU Decimalchain | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

