Smart Contract
Audit Report

@ SYSFIXED 24 Jul 2021

£ SYSFIXED

TABLE OF CONTENTS

| Audited Details

- Audited Project
- Blockchain
- Addresses

- Project Website
- Codebase

| Summary

- Contract Summary
- Audit Findings Summary
- Vulnerabilities Summary

| Conclusion

| Audit Results

| Smart Contract Analysis

- Detected Vulnerabilities

| Disclaimer

| About Us

Ox | Security Analysis

£ SYSFIXED

AUDITED DETAILS

| Audited Project

Ox | Security Analysis

Project name Token ticker Blockchain
0x ZRX.e Avalanche
| Addresses

Contract address

0x596fa47043f99a4e0f122243b841e55375cde0d2

Contract deployer address

0x50Ff3B278fCC70ec7A9465063d68029AB460eA04

| Project Website

https://www.0x.org/

| Codebase

https://snowtrace.io/address/0x596fa47043f99a4e0f122243b841e55375cde0d2#code

https://www.0x.org/
https://snowtrace.io/address/0x596fa47043f99a4e0f122243b841e55375cde0d2#code

@ SYSFIXED Ox | Security Analysis

SUMMARY

Ox is an essential infrastructure for the emerging crypto economy and enables markets to be created that
couldn't have existed. As more assets become tokenized, public blockchains allow establishing of a new
financial stack that is more efficient, transparent, and equitable than any previous system.

| Contract Summary

Documentation Quality
Ox provides a very good documentation with standard of solidity base code.
e The technical description is provided clearly and structured and also dont have any high risk issue.
Code Quality
The Overall quality of the basecode is standard.
e Standard solidity basecode and rules are already followed by Ox with the discovery of several low issues.
Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

e SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 541.

¢ SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 9, 88, 115,
141, 445, 485 and 524.

e SWC-107 | It is recommended to use a reentrancy lock, reentrancy weaknesses detected on lines 376
and 377.

e SWC-115| tx.origin should not be used for authorization, use msg.sender instead on lines 622, 622, 349,
419, 517,393 and 420.

@ SYSFIXED Ox | Security Analysis

CONCLUSION

We have audited the 0x project released in July 2021 to discover issues and identify potential security
vulnerabilities in 0x Project. This process is used to find technical issues and security loopholes which might
be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the 0x smart contract code do not pose a considerable risk. The writing of the contract is
close to the standard of writing contracts in general. The low-risk issues found are some arithmetic operation
issues, a floating pragma is set, read of persistent state following the external call, state variable visibility is not
set, and Use of "tx.origin" as a part of authorization control. The tx.origin environment variable has been found
to influence a control flow decision. Note that using tx.origin as a security control might cause a situation
where a user inadvertently authorizes a smart contract to act on their behalf. It is recommended to use
msg.sender instead. Also, it is recommended to specify a fixed compiler version to ensure that the bytecode
produced does not vary between builds. This is especially important if you rely on bytecode-level verification of
the code.

£ SYSFIXED

AUDIT RESULT

Ox | Security Analysis

Untrusted Callee

addresses.

Article Category Description Result
Functions and state variables visibility should be
N SWC-100 . e - ISSUE
Default Visibility set explicitly. Visibility levels should be specified
SWC-108 . FOUND
consciously.
Integer Overflow If unchecked math is used, all math operations
SWC-101 PASS
and Underflow should be safe from overflows and underflows.
Outdated Compiler It is recommended to use a recent version of the
. SWC-102 o) PASS
Version Solidity compiler.
Contracts should be deployed with the same ISSUE
Floating Pragma SWC-103 compiler version and flags that they have been T
tested thoroughly.
Unchecked Call The return value of a message call should be
SWC-104 PASS
Return Value checked.
Unprotected Ether Due to missing or insufficient access controls,
. SWC-105 L i , PASS
Withdrawal malicious parties can withdraw from the contract.
SELFDESTRUCT The contract should not be self-destructible while it
: SWC-106) PASS
Instruction has funds belonging to users.
Check effect interaction pattern should be followed ISSUE
Reentrancy SWC-107))
if the code performs recursive call. FOUND
Uninitialized Uninitialized local storage variables can point to
. SWC-109 i) PASS
Storage Pointer unexpected storage locations in the contract.
L SWC-110 Properly functioning code should never reach a
Assert Violation N PASS
SWC-123 failing assert statement.
Deprecated Solidity o)
. SWC-111 Deprecated built-in functions should never be used. PASS
Functions
Delegate call to Delegatecalls should only be allowed to trusted
SWC-112 PASS

£ SYSFIXED

DoS (Denial of
Service)

Race Conditions

Authorization
through tx.origin

Block values as a
proxy for time

Signature Unique
ID

Incorrect
Constructor Name

Shadowing State
Variable

Weak Sources of
Randomness

Write to Arbitrary
Storage Location

Incorrect
Inheritance Order

Insufficient Gas
Griefing

Arbitrary Jump
Function

SWC-113
SWC-128

SWC-114

SWC-115

SWC-116

SWC-117
SWC-121
SWC-122

SWC-118

SWC-119

SWC-120

SWC-124

SWC-125

SWC-126

SWC-127

Ox | Security Analysis

Execution of the code should never be blocked by a
specific contract state unless required.

Race Conditions and Transactions Order Dependency
should not be possible.

tx.origin should not be used for authorization.

Block numbers should not be used for time calculations.

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

Constructors are special functions that are called only
once during the contract creation.

State variables should not be shadowed.

Random values should never be generated from Chain
Attributes or be predictable.

The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

When inheriting multiple contracts, especially if they have

identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

PASS

ISSUE

FOUND

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

£ SYSFIXED

Typographical
Error

Override control
character

Unused variables

Unexpected Ether
balance

Hash Collisions
Variable

Hardcoded gas
amount

Unencrypted
Private Data

SWC-129

SWC-130

SWC-131
SWC-135

SWC-132

SWC-133

SWC-134

SWC-136

Ox | Security Analysis

A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

Contracts can behave erroneously when they strictly assume
a specific Ether balance.

Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

The transfer() and send() functions forward a fixed amount
of 2300 gas.

It is a common misconception that private type variables
cannot be read.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

@ SYSFIXED Ox | Security Analysis

SMART CONTRACT ANALYSIS

Started Friday Jul 23 2021 04:36:44 GMT+0000 (Coordinated Universal Time)
Finished Saturday Jul 24 2021 03:02:39 GMT+0000 (Coordinated Universal Time)
Mode Standard

Main Source File BridgeToken.sol

| Detected Issues

ID Title Severity | Status

SWC-103 | AFLOATING PRAGMA IS SET. low acknowledged
SWC-103 | A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 | A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 | A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 | A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 | AFLOATING PRAGMA IS SET. low acknowledged
SWC-103 | A FLOATING PRAGMA IS SET. low acknowledged
SWC-107 | READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged
SWC-107 | READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged
SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged
SWC-115 | USE OF TX.ORIGIN AS A PART OF AUTHORIZATION CONTROL. low acknowledged
SWC-115 | USE OF TX.ORIGIN AS A PART OF AUTHORIZATION CONTROL. low acknowledged
SWC-115 | USE OF TX.ORIGIN AS A PART OF AUTHORIZATION CONTROL. low acknowledged

£ SYSFIXED

SWC-115 USE OF TX.ORIGIN AS A PART OF AUTHORIZATION CONTROL. low | acknowledged
SWC-115 USE OF TX.ORIGIN AS A PART OF AUTHORIZATION CONTROL. low | acknowledged
SWC-115 USE OF TX.ORIGIN AS A PART OF AUTHORIZATION CONTROL. low | acknowledged

@ SYSFIXED Ox | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 9

low SEVERITY

The current pragma Solidity directive is ""*0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BridgeToken.sol

Locations
8
9 pragma solidity ~0.8.0;
10
11 [**
12 * @lev Interface of the ERC20 standard as defined in the ElP.
13

@ SYSFIXED Ox | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 88

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BridgeToken.sol

Locations

87

88 pragma solidity ~0.8.0;
89

90

91 [**

92

@ SYSFIXED Ox | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 115

low SEVERITY

The current pragma Solidity directive is ""*0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BridgeToken.sol

Locations
114
115 pragna solidity ~0.8.0;
116
117 /*

118 * @lev Provides information about the current execution context, including the
119

@ SYSFIXED Ox | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 141

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BridgeToken.sol

Locations

140
141 pragna solidity ~0.8.0;
142
143
144
145

@ SYSFIXED Ox | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 445

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BridgeToken.sol

Locations

444
445 pragma solidity ~0.8.0;
446
447
448
449

@ SYSFIXED Ox | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 485

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BridgeToken.sol

Locations

484

485 pragma solidity ~0.8.0;
486

487 library Roles {

488 struct Role {

489

@ SYSFIXED Ox | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 524

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BridgeToken.sol

Locations

523
524 pragma solidity ~0.8.0;
525
526
527
528

@ SYSFIXED Ox | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING

EXTERNAL CALL.
LINE 376

low SEVERITY

The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- BridgeToken.sol

Locations
375
376 _total Supply += anobunt;
377 _bal ances[account] += anount;
378 emt Transfer(address(0), account, anount);
379 }
380

@ SYSFIXED Ox | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING

EXTERNAL CALL.
LINE 377

low SEVERITY

The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- BridgeToken.sol

Locations

376 _total Supply += anobunt;

377 _bal ances[account] += anount;

378 em t Transfer(address(0), account, anount);
379 }

380

381

@ SYSFIXED Ox | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 541

low SEVERITY

It is best practice to set the visibility of state variables explicitly. The default visibility for "swapTokens" is
internal. Other possible visibility settings are public and private.

Source File
- BridgeToken.sol

Locations
540 }
541 mappi ng(address => SwapToken) swapTokens;
542
543 mappi ng(ui nt 256 => bool) public chainlds;
544

545

@ SYSFIXED Ox | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION

CONTROL.
LINE 622

low SEVERITY

The tx.origin environment variable has been found to influence a control flow decision. Note that using
“tx.origin" as a security control might cause a situation where a user inadvertently authorizes a smart contract
to perform an action on their behalf. It is recommended to use "msg.sender" instead.

Source File
- BridgeToken.sol

Locations

621 function unw ap(ui nt 256 anmount, uint256 chainld) public {

622 requi re(tx.origin == nsg.sender, "Contract calls not supported.");
623 requi re(chainlds[chainld] == true, "Chain ID not supported.");
624 _burn(nmsg. sender, anount);

625 emt Unw ap(anount, chainld);
626

@ SYSFIXED Ox | Security Analysis

SWC-115 | USE OF TX.ORIGIN AS A PART OF AUTHORIZATION

CONTROL.
LINE 622

low SEVERITY

The tx.origin environment variable has been found to influence a control flow decision. Note that using tx.origin
as a security control might cause a situation where a user inadvertently authorizes a smart contract to perform
an action on their behalf. It is recommended to use msg.sender instead.

Source File
- BridgeToken.sol

Locations

621 function unw ap(ui nt 256 anmount, uint256 chainld) public {

622 requi re(tx.origin == nsg.sender, "Contract calls not supported.");
623 requi re(chainlds[chainld] == true, "Chain ID not supported.");
624 _burn(nmsg. sender, anount);

625 emt Unw ap(anount, chainld);
626

@ SYSFIXED Ox | Security Analysis

SWC-115 | USE OF TX.ORIGIN AS A PART OF AUTHORIZATION

CONTROL.
LINE 349

low SEVERITY

The tx.origin environment variable has been found to influence a control flow decision. Note that using tx.origin
as a security control might cause a situation where a user inadvertently authorizes a smart contract to perform
an action on their behalf. It is recommended to use msg.sender instead.

Source File
- BridgeToken.sol

Locations

348 function _transfer(address sender, address recipient, uint256 anmount) internal

virtual {

349 requi re(sender != address(0), "ERC20: transfer fromthe zero address");
350 require(reci pient != address(0), "ERC20: transfer to the zero address");
351

352 _bef oreTokenTransf er (sender, recipient, anount);

353

@ SYSFIXED Ox | Security Analysis

SWC-115 | USE OF TX.ORIGIN AS A PART OF AUTHORIZATION

CONTROL.
LINE 419

low SEVERITY

The tx.origin environment variable has been found to influence a control flow decision. Note that using tx.origin
as a security control might cause a situation where a user inadvertently authorizes a smart contract to perform
an action on their behalf. It is recommended to use msg.sender instead.

Source File
- BridgeToken.sol

Locations

418 function _approve(address owner, address spender, uint256 anpunt) internal virtual

419 requi re(owner != address(0), "ERC20: approve fromthe zero address");
420 requi re(spender != address(0), "ERC20: approve to the zero address");
421

422 _al l omances[owner] [spender] = anount;

423

@ SYSFIXED Ox | Security Analysis

SWC-115 | USE OF TX.ORIGIN AS A PART OF AUTHORIZATION

CONTROL.
LINE 517

low SEVERITY

The tx.origin environment variable has been found to influence a control flow decision. Note that using tx.origin
as a security control might cause a situation where a user inadvertently authorizes a smart contract to perform
an action on their behalf. It is recommended to use msg.sender instead.

Source File
- BridgeToken.sol

Locations
516 {
517 requi re(account != address(0), "Roles: account is the zero address");
518 return rol e. bearer[account];
519 }
520 }
521

@ SYSFIXED Ox | Security Analysis

SWC-115 | USE OF TX.ORIGIN AS A PART OF AUTHORIZATION

CONTROL.
LINE 393

low SEVERITY

The tx.origin environment variable has been found to influence a control flow decision. Note that using tx.origin
as a security control might cause a situation where a user inadvertently authorizes a smart contract to perform
an action on their behalf. It is recommended to use msg.sender instead.

Source File
- BridgeToken.sol

Locations

392 function _burn(address account, uint256 anpunt) internal virtual {

393 requi re(account != address(0), "ERC20: burn fromthe zero address");
394

395 _DbeforeTokenTransfer(account, address(0), anmount);

396

397

@ SYSFIXED Ox | Security Analysis

SWC-115 | USE OF TX.ORIGIN AS A PART OF AUTHORIZATION
CONTROL.

LINE 420

low SEVERITY
The tx.origin environment variable has been found to influence a control flow decision. Note that using tx.origin
as a security control might cause a situation where a user inadvertently authorizes a smart contract to perform

an action on their behalf. It is recommended to use msg.sender instead.

Source File
- BridgeToken.sol

Locations
419 requi re(owner != address(0), "ERC20: approve fromthe zero address");
420 requi re(spender != address(0), "ERC20: approve to the zero address");
421
422 _al |l owances[owner] [spender] = anount;

423
424

emt Approval (owner, spender, anount);

@ SYSFIXED Ox | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below - please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

@ SYSFIXED Ox | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

