
0x

Smart Contract
Audit Report

24 Jul 2021

0x | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

0x | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

0x ZRX.e Avalanche

| Addresses

Contract address 0x596fa47043f99a4e0f122243b841e55375cde0d2

Contract deployer address 0x50Ff3B278fCC70ec7A9465063d68029AB460eA04

| Project Website

https://www.0x.org/

| Codebase

https://snowtrace.io/address/0x596fa47043f99a4e0f122243b841e55375cde0d2#code

https://www.0x.org/
https://snowtrace.io/address/0x596fa47043f99a4e0f122243b841e55375cde0d2#code

0x | Security Analysis

SUMMARY

0x is an essential infrastructure for the emerging crypto economy and enables markets to be created that
couldn't have existed. As more assets become tokenized, public blockchains allow establishing of a new
financial stack that is more efficient, transparent, and equitable than any previous system.

| Contract Summary

Documentation Quality

0x provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by 0x with the discovery of several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 541.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 9, 88, 115,
141, 445, 485 and 524.
SWC-107 | It is recommended to use a reentrancy lock, reentrancy weaknesses detected on lines 376
and 377.
SWC-115 | tx.origin should not be used for authorization, use msg.sender instead on lines 622, 622, 349,
419, 517, 393 and 420.

0x | Security Analysis

CONCLUSION

We have audited the 0x project released in July 2021 to discover issues and identify potential security
vulnerabilities in 0x Project. This process is used to find technical issues and security loopholes which might
be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the 0x smart contract code do not pose a considerable risk. The writing of the contract is
close to the standard of writing contracts in general. The low-risk issues found are some arithmetic operation
issues, a floating pragma is set, read of persistent state following the external call, state variable visibility is not
set, and Use of "tx.origin" as a part of authorization control. The tx.origin environment variable has been found
to influence a control flow decision. Note that using tx.origin as a security control might cause a situation
where a user inadvertently authorizes a smart contract to act on their behalf. It is recommended to use
msg.sender instead. Also, it is recommended to specify a fixed compiler version to ensure that the bytecode
produced does not vary between builds. This is especially important if you rely on bytecode-level verification of
the code.

0x | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

PASS

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

ISSUE
FOUND

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

PASS

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

0x | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization.
ISSUE

FOUND

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

0x | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

0x | Security Analysis

SMART CONTRACT ANALYSIS

Started Friday Jul 23 2021 04:36:44 GMT+0000 (Coordinated Universal Time)

Finished Saturday Jul 24 2021 03:02:39 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File BridgeToken.sol

| Detected Issues

ID Title Severity Status

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-107 READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged

SWC-107 READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF TX.ORIGIN AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF TX.ORIGIN AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF TX.ORIGIN AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF TX.ORIGIN AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF TX.ORIGIN AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF TX.ORIGIN AS A PART OF AUTHORIZATION CONTROL. low acknowledged

0x | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 9

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BridgeToken.sol

Locations

8

9 pragma solidity ^0.8.0;

10

11 /**

12 * @dev Interface of the ERC20 standard as defined in the EIP.

13

0x | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 88

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BridgeToken.sol

Locations

87

88 pragma solidity ^0.8.0;

89

90

91 /**

92

0x | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 115

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BridgeToken.sol

Locations

114

115 pragma solidity ^0.8.0;

116

117 /*

118 * @dev Provides information about the current execution context, including the

119

0x | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 141

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BridgeToken.sol

Locations

140

141 pragma solidity ^0.8.0;

142

143

144

145

0x | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 445

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BridgeToken.sol

Locations

444

445 pragma solidity ^0.8.0;

446

447

448

449

0x | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 485

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BridgeToken.sol

Locations

484

485 pragma solidity ^0.8.0;

486

487 library Roles {

488 struct Role {

489

0x | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 524

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BridgeToken.sol

Locations

523

524 pragma solidity ^0.8.0;

525

526

527

528

0x | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING
EXTERNAL CALL.
LINE 376

low SEVERITY
The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- BridgeToken.sol

Locations

375

376 _totalSupply += amount;

377 _balances[account] += amount;

378 emit Transfer(address(0), account, amount);

379 }

380

0x | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING
EXTERNAL CALL.
LINE 377

low SEVERITY
The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- BridgeToken.sol

Locations

376 _totalSupply += amount;

377 _balances[account] += amount;

378 emit Transfer(address(0), account, amount);

379 }

380

381

0x | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 541

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "swapTokens" is
internal. Other possible visibility settings are public and private.

Source File
- BridgeToken.sol

Locations

540 }

541 mapping(address => SwapToken) swapTokens;

542

543 mapping(uint256 => bool) public chainIds;

544

545

0x | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 622

low SEVERITY
The tx.origin environment variable has been found to influence a control flow decision. Note that using
"tx.origin" as a security control might cause a situation where a user inadvertently authorizes a smart contract
to perform an action on their behalf. It is recommended to use "msg.sender" instead.

Source File
- BridgeToken.sol

Locations

621 function unwrap(uint256 amount, uint256 chainId) public {

622 require(tx.origin == msg.sender, "Contract calls not supported.");

623 require(chainIds[chainId] == true, "Chain ID not supported.");

624 _burn(msg.sender, amount);

625 emit Unwrap(amount, chainId);

626

0x | Security Analysis

SWC-115 | USE OF TX.ORIGIN AS A PART OF AUTHORIZATION
CONTROL.
LINE 622

low SEVERITY
The tx.origin environment variable has been found to influence a control flow decision. Note that using tx.origin
as a security control might cause a situation where a user inadvertently authorizes a smart contract to perform
an action on their behalf. It is recommended to use msg.sender instead.

Source File
- BridgeToken.sol

Locations

621 function unwrap(uint256 amount, uint256 chainId) public {

622 require(tx.origin == msg.sender, "Contract calls not supported.");

623 require(chainIds[chainId] == true, "Chain ID not supported.");

624 _burn(msg.sender, amount);

625 emit Unwrap(amount, chainId);

626

0x | Security Analysis

SWC-115 | USE OF TX.ORIGIN AS A PART OF AUTHORIZATION
CONTROL.
LINE 349

low SEVERITY
The tx.origin environment variable has been found to influence a control flow decision. Note that using tx.origin
as a security control might cause a situation where a user inadvertently authorizes a smart contract to perform
an action on their behalf. It is recommended to use msg.sender instead.

Source File
- BridgeToken.sol

Locations

348 function _transfer(address sender, address recipient, uint256 amount) internal

virtual {

349 require(sender != address(0), "ERC20: transfer from the zero address");

350 require(recipient != address(0), "ERC20: transfer to the zero address");

351

352 _beforeTokenTransfer(sender, recipient, amount);

353

0x | Security Analysis

SWC-115 | USE OF TX.ORIGIN AS A PART OF AUTHORIZATION
CONTROL.
LINE 419

low SEVERITY
The tx.origin environment variable has been found to influence a control flow decision. Note that using tx.origin
as a security control might cause a situation where a user inadvertently authorizes a smart contract to perform
an action on their behalf. It is recommended to use msg.sender instead.

Source File
- BridgeToken.sol

Locations

418 function _approve(address owner, address spender, uint256 amount) internal virtual

{

419 require(owner != address(0), "ERC20: approve from the zero address");

420 require(spender != address(0), "ERC20: approve to the zero address");

421

422 _allowances[owner][spender] = amount;

423

0x | Security Analysis

SWC-115 | USE OF TX.ORIGIN AS A PART OF AUTHORIZATION
CONTROL.
LINE 517

low SEVERITY
The tx.origin environment variable has been found to influence a control flow decision. Note that using tx.origin
as a security control might cause a situation where a user inadvertently authorizes a smart contract to perform
an action on their behalf. It is recommended to use msg.sender instead.

Source File
- BridgeToken.sol

Locations

516 {

517 require(account != address(0), "Roles: account is the zero address");

518 return role.bearer[account];

519 }

520 }

521

0x | Security Analysis

SWC-115 | USE OF TX.ORIGIN AS A PART OF AUTHORIZATION
CONTROL.
LINE 393

low SEVERITY
The tx.origin environment variable has been found to influence a control flow decision. Note that using tx.origin
as a security control might cause a situation where a user inadvertently authorizes a smart contract to perform
an action on their behalf. It is recommended to use msg.sender instead.

Source File
- BridgeToken.sol

Locations

392 function _burn(address account, uint256 amount) internal virtual {

393 require(account != address(0), "ERC20: burn from the zero address");

394

395 _beforeTokenTransfer(account, address(0), amount);

396

397

0x | Security Analysis

SWC-115 | USE OF TX.ORIGIN AS A PART OF AUTHORIZATION
CONTROL.
LINE 420

low SEVERITY
The tx.origin environment variable has been found to influence a control flow decision. Note that using tx.origin
as a security control might cause a situation where a user inadvertently authorizes a smart contract to perform
an action on their behalf. It is recommended to use msg.sender instead.

Source File
- BridgeToken.sol

Locations

419 require(owner != address(0), "ERC20: approve from the zero address");

420 require(spender != address(0), "ERC20: approve to the zero address");

421

422 _allowances[owner][spender] = amount;

423 emit Approval(owner, spender, amount);

424

0x | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

0x | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

