
ZeroXPad

Smart Contract
Audit Report

27 Jan 2023

ZeroXPad | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

ZeroXPad | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

ZeroXPad ZXP Binance Smart Chain

| Addresses

Contract address 0xBBB603Da8A209188B1d083a6f7a6f66D4992a5f4

Contract deployer address 0x488A8CA56f29BFbe28e6f4cf898D5c3C1455deDa

| Project Website

https://www.0xpad.app/

| Codebase

https://bscscan.com/address/0xBBB603Da8A209188B1d083a6f7a6f66D4992a5f4#code

https://www.0xpad.app/
https://bscscan.com/address/0xBBB603Da8A209188B1d083a6f7a6f66D4992a5f4#code

ZeroXPad | Security Analysis

SUMMARY

0xpad is a hybrid fundraiser fusing marketing along an innovative borrow mechanism to raise funds for
startups, guarantee returns for investors, in addition to introducing the CBC standard.

| Contract Summary

Documentation Quality

ZeroXPad provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by ZeroXPad with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 283, 301, 320, 321, 338, 354, 369, 383, 397, 411, 427, 450, 473, 499, 943, 973, 1009, 1012, 1034,
1037, 1063, 1065, 1118, 1235, 1379 and 1395.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 9, 172, 223,
259, 508, 534, 623, 714, 742, 1168 and 1206.

ZeroXPad | Security Analysis

CONCLUSION

We have audited the ZeroXPad project released on January 2023 to discover issues and identify potential
security vulnerabilities in ZeroXPad Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report yielded satisfactory results with some low-risk issues.

The issues found in the code on ZeroXPad smart contract do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues and floating pragmas set on multiple lines.

ZeroXPad | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

PASS

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Caller

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

ZeroXPad | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to inherit
contracts from more /general/ to more /specific/.

PASS

ZeroXPad | Security Analysis

SMART CONTRACT ANALYSIS

Started Thursday Jan 26 2023 18:54:50 GMT+0000 (Coordinated Universal Time)

Finished Friday Jan 27 2023 19:43:57 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File ZeroXPad.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

ZeroXPad | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 283

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZeroXPad.sol

Locations

282 unchecked {

283 uint256 c = a + b;

284 if (c < a) return (false, 0);

285 return (true, c);

286 }

287

ZeroXPad | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 301

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZeroXPad.sol

Locations

300 if (b > a) return (false, 0);

301 return (true, a - b);

302 }

303 }

304

305

ZeroXPad | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 320

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZeroXPad.sol

Locations

319 if (a == 0) return (true, 0);

320 uint256 c = a * b;

321 if (c / a != b) return (false, 0);

322 return (true, c);

323 }

324

ZeroXPad | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 321

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZeroXPad.sol

Locations

320 uint256 c = a * b;

321 if (c / a != b) return (false, 0);

322 return (true, c);

323 }

324 }

325

ZeroXPad | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 338

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZeroXPad.sol

Locations

337 if (b == 0) return (false, 0);

338 return (true, a / b);

339 }

340 }

341

342

ZeroXPad | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 354

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZeroXPad.sol

Locations

353 if (b == 0) return (false, 0);

354 return (true, a % b);

355 }

356 }

357

358

ZeroXPad | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 369

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZeroXPad.sol

Locations

368 function add(uint256 a, uint256 b) internal pure returns (uint256) {

369 return a + b;

370 }

371

372 /**

373

ZeroXPad | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 383

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZeroXPad.sol

Locations

382 function sub(uint256 a, uint256 b) internal pure returns (uint256) {

383 return a - b;

384 }

385

386 /**

387

ZeroXPad | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 397

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZeroXPad.sol

Locations

396 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

397 return a * b;

398 }

399

400 /**

401

ZeroXPad | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 411

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZeroXPad.sol

Locations

410 function div(uint256 a, uint256 b) internal pure returns (uint256) {

411 return a / b;

412 }

413

414 /**

415

ZeroXPad | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 427

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZeroXPad.sol

Locations

426 function mod(uint256 a, uint256 b) internal pure returns (uint256) {

427 return a % b;

428 }

429

430 /**

431

ZeroXPad | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 450

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZeroXPad.sol

Locations

449 require(b <= a, errorMessage);

450 return a - b;

451 }

452 }

453

454

ZeroXPad | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 473

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZeroXPad.sol

Locations

472 require(b > 0, errorMessage);

473 return a / b;

474 }

475 }

476

477

ZeroXPad | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 499

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZeroXPad.sol

Locations

498 require(b > 0, errorMessage);

499 return a % b;

500 }

501 }

502 }

503

ZeroXPad | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 943

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZeroXPad.sol

Locations

942 address owner = _msgSender();

943 _approve(owner, spender, allowance(owner, spender) + addedValue);

944 return true;

945 }

946

947

ZeroXPad | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 973

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZeroXPad.sol

Locations

972 unchecked {

973 _approve(owner, spender, currentAllowance - subtractedValue);

974 }

975

976 return true;

977

ZeroXPad | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1009

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZeroXPad.sol

Locations

1008 unchecked {

1009 _balances[from] = fromBalance - amount;

1010 // Overflow not possible: the sum of all balances is capped by totalSupply, and

the sum is preserved by

1011 // decrementing then incrementing.

1012 _balances[to] += amount;

1013

ZeroXPad | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1012

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZeroXPad.sol

Locations

1011 // decrementing then incrementing.

1012 _balances[to] += amount;

1013 }

1014

1015 emit Transfer(from, to, amount);

1016

ZeroXPad | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1034

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZeroXPad.sol

Locations

1033

1034 _totalSupply += amount;

1035 unchecked {

1036 // Overflow not possible: balance + amount is at most totalSupply + amount, which

is checked above.

1037 _balances[account] += amount;

1038

ZeroXPad | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1037

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZeroXPad.sol

Locations

1036 // Overflow not possible: balance + amount is at most totalSupply + amount, which

is checked above.

1037 _balances[account] += amount;

1038 }

1039 emit Transfer(address(0), account, amount);

1040

1041

ZeroXPad | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1063

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZeroXPad.sol

Locations

1062 unchecked {

1063 _balances[account] = accountBalance - amount;

1064 // Overflow not possible: amount <= accountBalance <= totalSupply.

1065 _totalSupply -= amount;

1066 }

1067

ZeroXPad | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 1065

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZeroXPad.sol

Locations

1064 // Overflow not possible: amount <= accountBalance <= totalSupply.

1065 _totalSupply -= amount;

1066 }

1067

1068 emit Transfer(account, address(0), amount);

1069

ZeroXPad | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1118

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZeroXPad.sol

Locations

1117 unchecked {

1118 _approve(owner, spender, currentAllowance - amount);

1119 }

1120 }

1121 }

1122

ZeroXPad | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1235

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZeroXPad.sol

Locations

1234 require(

1235 ERC20.totalSupply() + amount <= cap(),

1236 "ERC20Capped: cap exceeded"

1237);

1238 super._mint(account, amount);

1239

ZeroXPad | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1379

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZeroXPad.sol

Locations

1378 uint256 fees = amount.mul(buyFee_).div(10000);

1379 uint256 rest = amount - fees;

1380

1381 super._transfer(from, treasury_, fees);

1382 super._transfer(from, to, rest);

1383

ZeroXPad | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1395

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZeroXPad.sol

Locations

1394

1395 uint256 rest = amount - fees;

1396 super._transfer(from, treasury_, fees);

1397 super._transfer(from, to, rest);

1398 } else {

1399

ZeroXPad | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 9

low SEVERITY
The current pragma Solidity directive is "">=0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ZeroXPad.sol

Locations

8

9 pragma solidity >=0.6.2;

10

11 interface IUniswapV2Router01 {

12 function factory() external pure returns (address);

13

ZeroXPad | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 172

low SEVERITY
The current pragma Solidity directive is "">=0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ZeroXPad.sol

Locations

171

172 pragma solidity >=0.6.2;

173

174 interface IUniswapV2Router02 is IUniswapV2Router01 {

175 function removeLiquidityETHSupportingFeeOnTransferTokens(

176

ZeroXPad | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 223

low SEVERITY
The current pragma Solidity directive is "">=0.5.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ZeroXPad.sol

Locations

222

223 pragma solidity >=0.5.0;

224

225 interface IUniswapV2Factory {

226 event PairCreated(

227

ZeroXPad | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 259

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ZeroXPad.sol

Locations

258

259 pragma solidity ^0.8.0;

260

261 // CAUTION

262 // This version of SafeMath should only be used with Solidity 0.8 or later,

263

ZeroXPad | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 508

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ZeroXPad.sol

Locations

507

508 pragma solidity ^0.8.0;

509

510 /**

511 * @dev Provides information about the current execution context, including the

512

ZeroXPad | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 534

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ZeroXPad.sol

Locations

533

534 pragma solidity ^0.8.0;

535

536 /**

537 * @dev Contract module which provides a basic access control mechanism, where

538

ZeroXPad | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 623

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ZeroXPad.sol

Locations

622

623 pragma solidity ^0.8.0;

624

625 /**

626 * @dev Interface of the ERC20 standard as defined in the EIP.

627

ZeroXPad | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 714

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ZeroXPad.sol

Locations

713

714 pragma solidity ^0.8.0;

715

716 /**

717 * @dev Interface for the optional metadata functions from the ERC20 standard.

718

ZeroXPad | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 742

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ZeroXPad.sol

Locations

741

742 pragma solidity ^0.8.0;

743

744 /**

745 * @dev Implementation of the {IERC20} interface.

746

ZeroXPad | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1168

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ZeroXPad.sol

Locations

1167

1168 pragma solidity ^0.8.0;

1169

1170 /**

1171 * @dev Extension of {ERC20} that allows token holders to destroy both their own

1172

ZeroXPad | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1206

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ZeroXPad.sol

Locations

1205

1206 pragma solidity ^0.8.0;

1207

1208 /**

1209 * @dev Extension of {ERC20} that adds a cap to the supply of tokens.

1210

ZeroXPad | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

ZeroXPad | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

