
Fileers

Smart Contract
Audit Report

16 Jan 2023

Fileers | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Fileers | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Fileers FPFS BSC

| Addresses

Contract address 0xf175AA11B1439E02D3Ce4B14Aad24D046dB3Bc3B

Contract deployer address 0x8c3f02a05e0e36229D7688393A9499E695f04281

| Project Website

https://fileers.com/

| Codebase

https://bscscan.com/address/0xf175AA11B1439E02D3Ce4B14Aad24D046dB3Bc3B#code

https://fileers.com/
https://bscscan.com/address/0xf175AA11B1439E02D3Ce4B14Aad24D046dB3Bc3B#code

Fileers | Security Analysis

SUMMARY

Scalability is a major challenge facing by Decentralized File-Sharing & Storage Networks. Imagine the potential
of a project that can address this issue and create a revolution. Fileers is focused on providing enterprise-level
scalability and aims to solve the issue of decentralization in the storage industry.

| Contract Summary

Documentation Quality

This project has a standard of documentation.

Technical description provided.

Code Quality

The quality of the code in this project is up to standard.

The official Solidity style guide is followed.

Test Scope

Project test coverage is 100% (Via Codebase).

| Audit Findings Summary

Issues Found

SWC-101 | Arithmetic operation issues discovered on lines 23, 26, 29, 32, 35, 44, 54, 196, 197, 373, 375,
543, 568, and 576.
SWC-101 | Compiler-rewritable issue discovered on line 375.
SWC-103 | A floating pragma is set on line 1, The current pragma Solidity directive is ""^0.8.4"". It is
recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary
between builds. This is especially important if you rely on bytecode-level verification of the code.
SWC-110 | Out of bounds array access discovered on lines 374, 375, 545, 546, 548, and 549.

Fileers | Security Analysis

CONCLUSION

We have audited the Fileers project which has released on January 2023, to discover issues and identify
potential security vulnerabilities in Fileers Project. This process is used to find technical issues and security
loopholes that find common issues in the code.

The security audit report produced satisfactory results with low-risk issues.

The most common issue found in writing code on contracts that do not pose a big risk is that writing on
contracts is close to the standard of writing contracts in general. The low-level issue found is a floating
pragma being set and out of bounds array access which the index access expression can cause an exception
in case of use of an invalid array index value.

Fileers | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Check-Effect
Interaction

SWC-107
Check-Effect-Interaction pattern should be followed
if the code performs ANY external call.

PASS

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Caller

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

Fileers | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to inherit
contracts from more /general/ to more /specific/.

PASS

Fileers | Security Analysis

SMART CONTRACT ANALYSIS

Started Sun Jan 15 2023 23:14:51 GMT+0000 (Coordinated Universal Time)

Finished Mon Jan 16 2023 00:02:24 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File Fileers.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

Fileers | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 23

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Fileers.sol

Locations

22 function add(uint256 a, uint256 b) internal pure returns (uint256) {

23 return a + b;

24 }

25 function sub(uint256 a, uint256 b) internal pure returns (uint256) {

Fileers | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 26

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Fileers.sol

Locations

25 function sub(uint256 a, uint256 b) internal pure returns (uint256) {

26 return a - b;

27 }

28 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

Fileers | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 29

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Fileers.sol

Locations

28 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

29 return a * b;

30 }

31 function div(uint256 a, uint256 b) internal pure returns (uint256) {

Fileers | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 32

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Fileers.sol

Locations

31 function div(uint256 a, uint256 b) internal pure returns (uint256) {

32 return a / b;

33 }

34 function mod(uint256 a, uint256 b) internal pure returns (uint256) {

Fileers | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 35

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Fileers.sol

Locations

34 function mod(uint256 a, uint256 b) internal pure returns (uint256) {

35 return a % b;

36 }

37 function sub(

Fileers | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 44

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Fileers.sol

Locations

43 require(b <= a, errorMessage);

44 return a - b;

45 }

46 }

Fileers | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 54

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Fileers.sol

Locations

53 require(b > 0, errorMessage);

54 return a / b;

55 }

56 }

Fileers | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 196

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Fileers.sol

Locations

195 _decimals = 18;

196 _tTotal = 2000000000 * 10**_decimals;

197 _rTotal = (MAX - (MAX % _tTotal));

198 _marketingWalletAddress = 0xc440c5C1a866189199F616E3D65B4F33a1e6f10E;

Fileers | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 197

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Fileers.sol

Locations

196 _tTotal = 2000000000 * 10**_decimals;

197 _rTotal = (MAX - (MAX % _tTotal));

198 _marketingWalletAddress = 0xc440c5C1a866189199F616E3D65B4F33a1e6f10E;

199 |

Fileers | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 373

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Fileers.sol

Locations

372 require(_isExcluded[account], "Account is already included");

373 for (uint256 i = 0; i < _excluded.length; i++) {

374 if (_excluded[i] == account) {

375 _excluded[i] = _excluded[_excluded.length - 1];

Fileers | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 375

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Fileers.sol

Locations

374 if (_excluded[i] == account) {

375 _excluded[i] = _excluded[_excluded.length - 1];

376 _tOwned[account] = 0;

377 _isExcluded[account] = false;

Fileers | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 543

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Fileers.sol

Locations

542 uint256 tSupply = _tTotal;

543 for (uint256 i = 0; i < _excluded.length; i++) {

544 if (

545 _rOwned[_excluded[i]] > rSupply ||

Fileers | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 568

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Fileers.sol

Locations

567 function calculateTaxFee(uint256 _amount) private view returns (uint256) {

568 return _amount.mul(_taxFee).div(10**2);

569 }

570

571 |

Fileers | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 576

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Fileers.sol

Locations

575 {

576 return _amount.mul(_marketingFee).div(10**2);

577 }

578 |

Fileers | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 375

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Fileers.sol

Locations

374 if (_excluded[i] == account) {

375 _excluded[i] = _excluded[_excluded.length - 1];

376 _tOwned[account] = 0;

377 _isExcluded[account] = false;

Fileers | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET
LINE 7

low SEVERITY
The current pragma Solidity directive is ""^0.8.4"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Fileers.sol

Locations

6 // SPDX-License-Identifier: Unlicensed

7 pragma solidity ^0.8.4;

8 interface IERC20 {

9 |

Fileers | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 374

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Fileers.sol

Locations

373 for (uint256 i = 0; i < _excluded.length; i++) {

374 if (_excluded[i] == account) {

375 _excluded[i] = _excluded[_excluded.length - 1];

376 _tOwned[account] = 0;

Fileers | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 375

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Fileers.sol

Locations

374 if (_excluded[i] == account) {

375 _excluded[i] = _excluded[_excluded.length - 1];

376 _tOwned[account] = 0;

377 _isExcluded[account] = false;

Fileers | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 545

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Fileers.sol

Locations

544 if (

545 _rOwned[_excluded[i]] > rSupply ||

546 _tOwned[_excluded[i]] > tSupply

547) return (_rTotal, _tTotal);

Fileers | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 546

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Fileers.sol

Locations

545 _rOwned[_excluded[i]] > rSupply ||

546 _tOwned[_excluded[i]] > tSupply

547) return (_rTotal, _tTotal);

548 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

Fileers | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 548

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Fileers.sol

Locations

547) return (_rTotal, _tTotal);

548 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

549 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

550 }

Fileers | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 549

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Fileers.sol

Locations

548 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

549 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

550 }

551 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

Fileers | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Fileers | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

