
CFX Quantum

Smart Contract
Audit Report

21 Sep 2020



CFX Quantum | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us



CFX Quantum | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

CFX Quantum CFXQ Ethereum

| Addresses

Contract address 0x0557E0d15aeC0b9026dD17aA874fDf7d182A2cEB

Contract deployer address 0x3c73D73a500373C7689b480a0f7b4b3F35600d52

| Project Website

https://cfxquantum.com/ 

| Codebase

https://etherscan.io/address/0x0557E0d15aeC0b9026dD17aA874fDf7d182A2cEB#code 

https://cfxquantum.com/
https://etherscan.io/address/0x0557E0d15aeC0b9026dD17aA874fDf7d182A2cEB#code


CFX Quantum | Security Analysis

SUMMARY

CFX Quantum is a revolutionary Company that specializes in the most advanced, Trading System, which is
ahead it's time.

| Contract Summary

Documentation Quality

CFX Quantum provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by CFX Quantum with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% ( Through Codebase )

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 519.
SWC-102 | It is recommended to use a recent version of the Solidity compiler on lines 5.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 78 and 121.
SWC-111 | It is recommended to use alternatives to the deprecated constructions on lines 14, 15, 25,
250, 311, 365, 445, 455, 467, 568 and 577.
SWC-115 | tx.origin should not be used for authorization, use msg.sender instead on lines 557, 558, 559,
559, 560, 564 and 564.



CFX Quantum | Security Analysis

CONCLUSION

We have audited the CFX Quantum project released on September 2020 to discover issues and identify
potential security vulnerabilities in CFX Quantum Project. This process is used to find technical issues and
security loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the CFX Quantum smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are an outdated
compiler version being used, the use of the "constant" state mutability modifier, an assertion violation was
triggered, a state variable visibility is not set as a public state variable with array type causing reachable
exception by default, weak sources of randomness, tx.origin as a part of authorization control, and lastly, a
requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are
provided to the nested call (for instance, via passed arguments)



CFX Quantum | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

PASS

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

ISSUE
FOUND

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

PASS

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used.
ISSUE

FOUND

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS



CFX Quantum | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization.
ISSUE

FOUND

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS



CFX Quantum | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS



CFX Quantum | Security Analysis

SMART CONTRACT ANALYSIS

Started Sunday Sep 20 2020 00:48:14 GMT+0000 (Coordinated Universal Time)

Finished Monday Sep 21 2020 05:29:09 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File Exact Match) Contract Name: CFXQV1.sol

| Detected Issues

ID Title Severity Status

SWC-102 AN OUTDATED COMPILER VERSION IS USED. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged



SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-123 REQUIREMENT VIOLATION. low acknowledged



CFX Quantum | Security Analysis

SWC-102 | AN OUTDATED COMPILER VERSION IS USED.
LINE 5

low SEVERITY
The compiler version specified in the pragma directive may have known bugs. It is recommended to use the
latest minor release of solc 0.5 or 0.6. For more information on Solidity compiler bug reports and fixes refer to
https://github.com/ethereum/solidity/releases. 

Source File
- Exact Match) Contract Name: CFXQV1.sol 

Locations

4   

5   pragma solidity 0.4.26;

6   

7   /**

8   * @title ERC20Basic

9   



CFX Quantum | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 519

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "planNumber" is
internal. Other possible visibility settings are public and private. 

Source File
- Exact Match) Contract Name: CFXQV1.sol 

Locations

518   

519   uint planNumber = 0;

520   

521   mapping(uint => uint) public planTime;

522   

523   



CFX Quantum | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 78

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values). 

Source File
- Exact Match) Contract Name: CFXQV1.sol 

Locations

77   function sub(uint256 a, uint256 b) internal pure returns (uint256) {

78   assert(b <= a);

79   return a - b;

80   }

81   

82   



CFX Quantum | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 14

low SEVERITY
Using "constant" as a state mutability modifier in function "totalSupply" is disallowed as of Solidity version
0.5.0. Use "view" instead. 

Source File
- Exact Match) Contract Name: CFXQV1.sol 

Locations

13   uint public _totalSupply;

14   function totalSupply() public constant returns (uint);

15   function balanceOf(address who) public constant returns (uint);

16   function transfer(address to, uint value) public;

17   event Transfer(address indexed from, address indexed to, uint value);

18   



CFX Quantum | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 15

low SEVERITY
Using "constant" as a state mutability modifier in function "balanceOf" is disallowed as of Solidity version 0.5.0.
Use "view" instead. 

Source File
- Exact Match) Contract Name: CFXQV1.sol 

Locations

14   function totalSupply() public constant returns (uint);

15   function balanceOf(address who) public constant returns (uint);

16   function transfer(address to, uint value) public;

17   event Transfer(address indexed from, address indexed to, uint value);

18   }

19   



CFX Quantum | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 25

low SEVERITY
Using "constant" as a state mutability modifier in function "allowance" is disallowed as of Solidity version 0.5.0.
Use "view" instead. 

Source File
- Exact Match) Contract Name: CFXQV1.sol 

Locations

24   contract ERC20 is ERC20Basic {

25   function allowance(address owner, address spender) public constant returns (uint);

26   function transferFrom(address from, address to, uint value) public;

27   function approve(address spender, uint value) public;

28   event Approval(address indexed owner, address indexed spender, uint value);

29   



CFX Quantum | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 250

low SEVERITY
Using "constant" as a state mutability modifier in function "balanceOf" is disallowed as of Solidity version 0.5.0.
Use "view" instead. 

Source File
- Exact Match) Contract Name: CFXQV1.sol 

Locations

249   */

250   function balanceOf(address _owner) public constant returns (uint balance) {

251   return balances[_owner];

252   }

253   

254   



CFX Quantum | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 311

low SEVERITY
Using "constant" as a state mutability modifier in function "allowance" is disallowed as of Solidity version 0.5.0.
Use "view" instead. 

Source File
- Exact Match) Contract Name: CFXQV1.sol 

Locations

310   */

311   function allowance(address _owner, address _spender) public constant returns (uint 

remaining) {

312   return allowed[_owner][_spender];

313   }

314   

315   



CFX Quantum | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 365

low SEVERITY
Using "constant" as a state mutability modifier in function "getBlackListStatus" is disallowed as of Solidity
version 0.5.0. Use "view" instead. 

Source File
- Exact Match) Contract Name: CFXQV1.sol 

Locations

364   /////// Getters to allow the same blacklist to be used also by other contracts 

(including upgraded Tether) ///////

365   function getBlackListStatus(address _maker) external constant returns (bool) {

366   return isBlackListed[_maker];

367   }

368   

369   



CFX Quantum | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 445

low SEVERITY
Using "constant" as a state mutability modifier in function "balanceOf" is disallowed as of Solidity version 0.5.0.
Use "view" instead. 

Source File
- Exact Match) Contract Name: CFXQV1.sol 

Locations

444   // Forward ERC20 methods to upgraded contract if this one is deprecated

445   function balanceOf(address who) public constant returns (uint){

446   return super.balanceOf(who);

447   }

448   

449   



CFX Quantum | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 455

low SEVERITY
Using "constant" as a state mutability modifier in function "allowance" is disallowed as of Solidity version 0.5.0.
Use "view" instead. 

Source File
- Exact Match) Contract Name: CFXQV1.sol 

Locations

454   // Forward ERC20 methods to upgraded contract if this one is deprecated

455   function allowance(address _owner, address _spender) public constant returns (uint 

remaining){

456   

457   return super.allowance(_owner, _spender);

458   }

459   



CFX Quantum | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 467

low SEVERITY
Using "constant" as a state mutability modifier in function "totalSupply" is disallowed as of Solidity version
0.5.0. Use "view" instead. 

Source File
- Exact Match) Contract Name: CFXQV1.sol 

Locations

466   // deprecate current contract if favour of a new one

467   function totalSupply() public constant returns (uint) {

468   

469   return _totalSupply;

470   }

471   



CFX Quantum | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 568

low SEVERITY
Using "constant" as a state mutability modifier in function "allPlanAmount" is disallowed as of Solidity version
0.5.0. Use "view" instead. 

Source File
- Exact Match) Contract Name: CFXQV1.sol 

Locations

567   

568   function allPlanAmount(address investor) public constant returns (uint balance){

569   

570   uint256 amount = 0;

571   for(uint i = 1; i <= planNumber; i++){

572   



CFX Quantum | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 577

low SEVERITY
Using "constant" as a state mutability modifier in function "planAmount" is disallowed as of Solidity version
0.5.0. Use "view" instead. 

Source File
- Exact Match) Contract Name: CFXQV1.sol 

Locations

576   

577   function planAmount(address investor, uint256 _planNumber) public constant returns 

(uint balance){

578   

579   return plan[investor][_planNumber];

580   }

581   



CFX Quantum | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 557

low SEVERITY
The tx.origin environment variable has been found to influence a control flow decision. Note that using
"tx.origin" as a security control might cause a situation where a user inadvertently authorizes a smart contract
to perform an action on their behalf. It is recommended to use "msg.sender" instead. 

Source File
- Exact Match) Contract Name: CFXQV1.sol 

Locations

556   if(_planTime[i] < block.timestamp){

557   if(_plan[tx.origin][i] > 0){

558   allPlanAmount = allPlanAmount.add(_plan[tx.origin][i]);

559   emit PlanReleased(i, _plan[tx.origin][i], tx.origin);

560   delete plan[tx.origin][i];

561   



CFX Quantum | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 558

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing. 

Source File
- Exact Match) Contract Name: CFXQV1.sol 

Locations

557   if(_plan[tx.origin][i] > 0){

558   allPlanAmount = allPlanAmount.add(_plan[tx.origin][i]);

559   emit PlanReleased(i, _plan[tx.origin][i], tx.origin);

560   delete plan[tx.origin][i];

561   }

562   



CFX Quantum | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 559

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing. 

Source File
- Exact Match) Contract Name: CFXQV1.sol 

Locations

558   allPlanAmount = allPlanAmount.add(_plan[tx.origin][i]);

559   emit PlanReleased(i, _plan[tx.origin][i], tx.origin);

560   delete plan[tx.origin][i];

561   }

562   }

563   



CFX Quantum | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 559

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing. 

Source File
- Exact Match) Contract Name: CFXQV1.sol 

Locations

558   allPlanAmount = allPlanAmount.add(_plan[tx.origin][i]);

559   emit PlanReleased(i, _plan[tx.origin][i], tx.origin);

560   delete plan[tx.origin][i];

561   }

562   }

563   



CFX Quantum | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 560

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing. 

Source File
- Exact Match) Contract Name: CFXQV1.sol 

Locations

559   emit PlanReleased(i, _plan[tx.origin][i], tx.origin);

560   delete plan[tx.origin][i];

561   }

562   }

563   }

564   



CFX Quantum | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 564

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing. 

Source File
- Exact Match) Contract Name: CFXQV1.sol 

Locations

563   }

564   balances[tx.origin] = balances[tx.origin].add(allPlanAmount);

565   

566   }

567   

568   



CFX Quantum | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 564

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing. 

Source File
- Exact Match) Contract Name: CFXQV1.sol 

Locations

563   }

564   balances[tx.origin] = balances[tx.origin].add(allPlanAmount);

565   

566   }

567   

568   



CFX Quantum | Security Analysis

SWC-123 | REQUIREMENT VIOLATION.
LINE 121

low SEVERITY
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are
provided to the nested call (for instance, via passed arguments). 

Source File
- Exact Match) Contract Name: CFXQV1.sol 

Locations

120   // out and outsize are 0 because we don't know the size yet.

121   let result := delegatecall(gas, implementation, 0, calldatasize, 0, 0)

122   // Copy the returned data.

123   returndatacopy(0, 0, returndatasize)

124   switch result

125   



CFX Quantum | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.



CFX Quantum | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.


