SFMDAO

Smart Contract
Audit Report

@ SYSFIXED 09 Aug 2022

£ SYSFIXED

TABLE OF CONTENTS

| Audited Details

- Audited Project
- Blockchain
- Addresses

- Project Website
- Codebase

| Summary

- Contract Summary
- Audit Findings Summary
- Vulnerabilities Summary

| Conclusion

| Audit Results

| Smart Contract Analysis

- Detected Vulnerabilities

| Disclaimer

| About Us

SFMDAO | Security Analysis

£ SYSFIXED

AUDITED DETAILS

| Audited Project

SFMDAO | Security Analysis

Project name Token ticker Blockchain
SFMDAO SFM Ethereum
| Addresses

Contract address

0x750b74f3f992a492b7606227dc9a9de59627bf8d

Contract deployer address

0x4D654149¢c3842d6d48C05d28F621Cbb0AebbC959

| Project Website

https://sickfishmixnft.io/

| Codebase

https://etherscan.io/address/0x750b74f3f992a492b7606227dc9a9de59627bf8d#code

https://sickfishmixnft.io/
https://etherscan.io/address/0x750b74f3f992a492b7606227dc9a9de59627bf8d#code

@ SYSFIXED SFMDAO | Security Analysis

SUMMARY

The Sick Fish Mix DAO has the following membership benefits: Royalties from our Global BeachWear Fashion
Line, Toys and Merchandise Collection which is available in real life and Metaverse, Defi Products, Recycling
Facilities, Play 2 Earn Game, SFM Loyalty Program which has over 1.5m retail outlets from top brands across
the globe who pay up to 50% cash back in S$SFM Token! - all this and much more!! Through the SFM DAO eco-
system these pillars are utilized in unison to help scale an effective fight against the plastic pollution in our
oceans and environment in general. Blockchain lays the foundation for a vision of the future that's possible -
resulting in a greener planet whilst simultaneously generating generous rewards for our community members.

| Contract Summary

Documentation Quality
SFMDAO provides a very good documentation with standard of solidity base code.
e The technical description is provided clearly and structured and also dont have any high risk issue.
Code Quality
The Overall quality of the basecode is standard.

e Standard solidity basecode and rules are already followed by SFMDAO with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

e SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 10, 253, 318,
364,410, 480, 712, 818, 845, 930, 960, 1326, 1389, 1480 and 1715.

e SWC-120 | It is recommended to use external sources of randomness via oracles on lines 1554, 1567,
1696 and 1699.

@ SYSFIXED SFMDAO | Security Analysis

CONCLUSION

We have audited the SFMDAO project released on August 2022 to discover issues and identify potential
security vulnerabilities in SFMDAO Project. This process is used to find technical issues and security loopholes
which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the SFMDAO smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some floating
pragmas set on several lines and some weak sources of randomness. It is recommended to use external
sources of randomness via oracles.

@‘S\FSFHEU SFMDAO | Security Analysis

AUDIT RESULT

Article Category Description Result
SWC-100 Functions and state variables visibility should be
Default Visibility SWC-108 set explicitly. Visibility levels should be specified PASS
consciously.
Integer Overflow If unchecked math is used, all math operations
SWC-101 PASS
and Underflow should be safe from overflows and underflows.
Outdated Compiler It is recommended to use a recent version of the
. SWC-102 L . PASS
Version Solidity compiler.
Contracts should be deployed with the same ISSUE
Floating Pragma SWC-103 compiler version and flags that they have been T
tested thoroughly.
Unchecked Call The return value of a message call should be
SWC-104 PASS
Return Value checked.
Unprotected Ether Due to missing or insufficient access controls,
. SWC-105 . i , PASS
Withdrawal malicious parties can withdraw from the contract.
SELFDESTRUCT The contract should not be self-destructible while it
. SWC-106 . PASS
Instruction has funds belonging to users.

Check effect interaction pattern should be followed
Reentrancy SWC-107 . . PASS
if the code performs recursive call.

Uninitialized Uninitialized local storage variables can point to
. SWC-109 i . PASS
Storage Pointer unexpected storage locations in the contract.
L SWC-110 Properly functioning code should never reach a
Assert Violation PASS

SWC-123 failing assert statement.

Deprecated Solidity

. SWC-111 Deprecated built-in functions should never be used. PASS
Functions

Delegate call to Delegatecalls should only be allowed to trusted
SWC-112

PASS
Untrusted Callee addresses.

£ SYSFIXED

DoS (Denial of
Service)

Race Conditions

Authorization
through tx.origin

Block values as a
proxy for time

Signature Unique
ID

Incorrect
Constructor Name

Shadowing State
Variable

Weak Sources of
Randomness

Write to Arbitrary
Storage Location

Incorrect
Inheritance Order

Insufficient Gas
Griefing

Arbitrary Jump
Function

SWC-113
SWC-128

SWC-114

SWC-115

SWC-116

SWC-117
SWC-121
SWC-122

SWC-118

SWC-119

SWC-120

SWC-124

SWC-125

SWC-126

SWC-127

SFMDAO | Security Analysis

Execution of the code should never be blocked by a
specific contract state unless required.

Race Conditions and Transactions Order Dependency
should not be possible.

tx.origin should not be used for authorization.

Block numbers should not be used for time calculations.

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

Constructors are special functions that are called only
once during the contract creation.

State variables should not be shadowed.

Random values should never be generated from Chain
Attributes or be predictable.

The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

When inheriting multiple contracts, especially if they have

identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

ISSUE
FOUND

PASS

PASS

PASS

PASS

£ SYSFIXED

Typographical
Error

Override control
character

Unused variables

Unexpected Ether
balance

Hash Collisions
Variable

Hardcoded gas
amount

Unencrypted
Private Data

SWC-129

SWC-130

SWC-131
SWC-135

SWC-132

SWC-133

SWC-134

SWC-136

SFMDAO | Security Analysis

A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

Contracts can behave erroneously when they strictly assume
a specific Ether balance.

Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

The transfer() and send() functions forward a fixed amount
of 2300 gas.

It is a common misconception that private type variables
cannot be read.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

£ SYSFIXED

SMART CONTRACT ANALYSIS

SFMDAO | Security Analysis

Started Monday Aug 08 2022 10:36:32 GMT+0000 (Coordinated Universal Time)
Finished Tuesday Aug 09 2022 01:14:20 GMT+0000 (Coordinated Universal Time)
Mode Standard
Main Source File Token.sol

| Detected Issues

ID Title Severity Status

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

£ SYSFIXED

SWC-103 &= AFLOATING PRAGMA IS SET. low | acknowledged
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF

SWC-120 low | acknowledged
RANDOMNESS.
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF

SWC-120 low | acknowledged
RANDOMNESS.
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF

SWC-120 low | acknowledged
RANDOMNESS.
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF

SWC-120 low | acknowledged
RANDOMNESS.

@‘S\FSFHEU SFMDAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 10

low SEVERITY

The current pragma Solidity directive is ""*0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol
Locations
9
10 pragme solidity ~0.8.0;
11
12 [**
13 * @lev Wappers over Solidity's uintXX/intXX casting operators with added overfl ow
14

@‘S\FSFHEU SFMDAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 253

low SEVERITY

The current pragma Solidity directive is ""*0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

252 /1l OpenZeppelin Contracts (last updated v4.5.0) (governance/utils/|Votes.sol)
253 pragma solidity ~0.8.0;

254

255 [**

256 * @lev Conmon interface for {ERC20Votes}, {ERC721Votes}, and other {Votes}-enabled
contracts.

257

@‘S\FSFHEU SFMDAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 318

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol
Locations
317
318 pragma solidity ~0.8.0;
319
320 /**
321 * @lev Standard math utilities mssing in the Solidity |anguage.
322

@‘S\FSFHEU SFMDAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 364

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol
Locations
363
364 pragma solidity ~0.8.0;
365
366 [=S
367 * @itle Counters
368

@‘S\FSFHEU SFMDAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 410

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File

- Token.sol

Locations
409
410 pragna solidity ~0.8.0;
411
412 | **
413 * @lev String operations.
414

@‘S\FSHREU SFMDAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 480

low SEVERITY

The current pragma Solidity directive is ""*0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

479

480 pragma solidity ~0.8.0;
481

482

483 [**

484

@‘S\FSFHEU SFMDAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 712

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

711

712 pragna solidity ~0.8.0;
713

714

715 [**

716

@‘S\FSFHEU SFMDAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 818

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol
Locations
817
818 pragma solidity ~0.8.0;
819
820 [Jes
821 * @lev Provides information about the current execution context, including the
822

@‘S\FSFHEU SFMDAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 845

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol
Locations
844
845 pragma solidity ~0.8.0;
846
847 [=S
848 * @lev Interface of the ERC20 standard as defined in the ElP.
849

@‘S\FSFHEU SFMDAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 930

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

929

930 pragma solidity ~0.8.0;
931

932

933 [**

934

@‘S\FSHREU SFMDAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 960

low SEVERITY

The current pragma Solidity directive is ""*0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

959
960 pragma solidity ~0.8.0;
961
962
963
964

@‘S\FSFHEU SFMDAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1326

low SEVERITY

The current pragma Solidity directive is ""*0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

1325

1326 pragma solidity ~0.8.0;

1327

1328 /[**

1329 * @lev Interface of the ERC20 Permit extension allow ng approvals to be nade via
signatures, as defined in

1330

@‘S\FSHREU SFMDAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1389

low SEVERITY

The current pragma Solidity directive is ""*0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

1388
1389 pragma solidity ~0.8.0;
1390
1391
1392
1393

@‘S\FSHREU SFMDAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1480

low SEVERITY

The current pragma Solidity directive is ""*0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

1479
1480 pragma solidity ~0.8.0;
1481
1482
1483
1484

@‘S\FSFHEU SFMDAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1715

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

1714

1715 pragma solidity ~0.8.0;

1716

1717

1718 contract Omable is Context {
1719

@‘S\FSHREU SFMDAO | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE

OF RANDOMNESS.
LINE 1554

low SEVERITY

The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- Token.sol

Locations

1553 function get Past Vot es(address account, uint256 bl ockNunber) public view virtua
override returns (uint256) ({

1554 requi re(bl ockNunber < bl ock. nunber, "ERC20Votes: block not yet mned");

1555 return _checkpoi nt sLookup(_checkpoi nts[account], bl ockNunber);

1556 }

1557

1558

@‘S\FSHREU SFMDAO | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE

OF RANDOMNESS.
LINE 1567

low SEVERITY

The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- Token.sol

Locations

1566 function get Past Tot al Suppl y(ui nt 256 bl ockNunber) public view virtual override
returns (uint256) {

1567 requi re(bl ockNunber < bl ock. nunber, "ERC20Votes: block not yet mned");

1568 return _checkpoi nt sLookup(_t ot al Suppl yCheckpoi nts, bl ockNunber);

1569 }

1570

1571

@‘S\FSHREU SFMDAO | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE

OF RANDOMNESS.
LINE 1696

low SEVERITY

The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- Token.sol

Locations

1695

1696 if (pos > 0 && ckpts[pos - 1].fromBl ock == bl ock. nunber) {

1697 ckpts[pos - 1].votes = SafeCast.toU nt224(newéi ght);

1698 } else {

1699 ckpts. push(Checkpoi nt ({fronBl ock: SafeCast.toU nt32(bl ock. nunber), votes:
Saf eCast . t oUi nt 224(newi ght)}));

1700

@S‘I"‘SH}I{ED SFMDAO | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE

OF RANDOMNESS.
LINE 1699

low SEVERITY

The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- Token.sol

Locations

1698 } else {
1699 ckpts. push(Checkpoi nt ({fronBl ock: SafeCast.toU nt32(bl ock. nunmber), votes:
Saf eCast . t oUi nt 224(newéi ght)}));

1700 }
1701}
1702

1703

@‘S‘I"‘SH}I{ED SFMDAO | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below - please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

@‘S‘I"‘SH}I{ED SFMDAO | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

