
NanoMatic

Smart Contract
Audit Report

11 Mar 2023

NanoMatic | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

NanoMatic | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

NanoMatic NANO Binance Smart Chain

| Addresses

Contract address 0xb15488af39bd1de209d501672a293bcd05f82ab4

Contract deployer address 0x6A8160398eb57cb4d0C74d7B5C0F74b4a2D29b07

| Project Website

https://www.nanomatic.io/

| Codebase

https://bscscan.com/address/0xb15488af39bd1de209d501672a293bcd05f82ab4#code

https://www.nanomatic.io/
https://bscscan.com/address/0xb15488af39bd1de209d501672a293bcd05f82ab4#code

NanoMatic | Security Analysis

SUMMARY

NanoMatic is a deflationary Matic rewards token on the Binance Smart Chain. NanoMatic embellishes a state-
of-the-art rewards distributor, offering 10% Matic Rewards on both buys and sells. The token will serve as the
form of currency of OptDex, a revolutionary DeFi Cryptocurrency Options trading platform slated to be released
in late 2023. NanoMatic will launch with an initial supply of 10 million, a “Nano” amount compared to Matic’s
monstrous 10 billion result supply. The token, however, will be deflationary as NanoMatic will offer a
revolutionary concept of Burn & Sync.

| Contract Summary

Documentation Quality

NanoMatic provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by NanoMatic with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 849, 943, 944 and 946.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 105, 137, 160, 161, 196, 232, 259, 263, 275, 282, 291, 375, 665, 865, 952, 952, 1003, 1003, 1016,
1019, 1172, 1174, 1216, 1216, 1222, 1229, 1299, 1318, 1323, 1323, 1323, 1323, 1323, 1324, 1385, 1411,
1411, 1450, 1450, 1450, 1450, 1450, 1474, 1480, 1499, 1508, 1708, 1757, 1779, 1787, 1956, 1966, 1969,
375 and 1174.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 346, 376, 381, 1173, 1174, 1174, 1300, 1300, 1301, 1302, 1549,
1550, 1567, 1568, 1581, 1582, 1583 and 1962.
SWC-115 | tx.origin should not be used for authorization, use msg.sender instead on lines 1424 and
2007.

NanoMatic | Security Analysis

CONCLUSION

We have audited the NanoMatic project released on March 2021 to discover issues and identify potential
security vulnerabilities in NanoMatic Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the NanoMatic smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are arithmetic
operation issues, a state variable visibility is not set, tx.origin as a part of authorization control, and out-of-
bounds array access in which the index access expression can cause an exception to the use of an invalid
array index value. State variable visibility is not set, the best practice is to set the visibility of state variables
explicitly. The default visibility for "walletFeeInBNB" is internal. Other possible visibility settings are public and
private. Use of "tx.origin" as a part of authorization control. Using "tx.origin" as a security control can lead to
authorization bypass vulnerabilities. Consider using "msg.sender" unless you really know what you are doing.

NanoMatic | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

PASS

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

NanoMatic | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization.
ISSUE

FOUND

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

NanoMatic | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

NanoMatic | Security Analysis

SMART CONTRACT ANALYSIS

Started Friday Mar 10 2023 11:09:00 GMT+0000 (Coordinated Universal Time)

Finished Saturday Mar 11 2023 08:05:13 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File Token.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 105

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

104 function add(uint256 a, uint256 b) internal pure returns (uint256) {

105 uint256 c = a + b;

106 require(c >= a, "SafeMath: addition overflow");

107

108 return c;

109

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 137

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

136 require(b <= a, errorMessage);

137 uint256 c = a - b;

138

139 return c;

140 }

141

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 160

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

159

160 uint256 c = a * b;

161 require(c / a == b, "SafeMath: multiplication overflow");

162

163 return c;

164

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 161

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

160 uint256 c = a * b;

161 require(c / a == b, "SafeMath: multiplication overflow");

162

163 return c;

164 }

165

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 196

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

195 require(b > 0, errorMessage);

196 uint256 c = a / b;

197 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

198

199 return c;

200

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 232

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

231 require(b != 0, errorMessage);

232 return a % b;

233 }

234 }

235

236

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 259

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

258 function mul(int256 a, int256 b) internal pure returns (int256) {

259 int256 c = a * b;

260

261 // Detect overflow when multiplying MIN_INT256 with -1

262 require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

263

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 263

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

262 require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

263 require((b == 0) || (c / b == a));

264 return c;

265 }

266

267

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 275

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

274 // Solidity already throws when dividing by 0.

275 return a / b;

276 }

277

278 /**

279

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 282

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

281 function sub(int256 a, int256 b) internal pure returns (int256) {

282 int256 c = a - b;

283 require((b >= 0 && c <= a) || (b < 0 && c > a));

284 return c;

285 }

286

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 291

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

290 function add(int256 a, int256 b) internal pure returns (int256) {

291 int256 c = a + b;

292 require((b >= 0 && c >= a) || (b < 0 && c < a));

293 return c;

294 }

295

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 375

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

374 uint index = map.indexOf[key];

375 uint lastIndex = map.keys.length - 1;

376 address lastKey = map.keys[lastIndex];

377

378 map.indexOf[lastKey] = index;

379

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 665

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

664 _owner = address(0);

665 _lockTime = block.timestamp + time;

666 emit OwnershipTransferred(_owner, address(0));

667 }

668

669

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 865

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

864 uint256 public _tDividendTotal = 0;

865 uint256 internal constant magnitude = 2**128;

866 uint256 internal magnifiedDividendPerShare;

867 mapping(address => int256) internal magnifiedDividendCorrections;

868 mapping(address => uint256) internal withdrawnDividends;

869

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 952

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

951 uint256 public numTokensSellToAddToLiquidity;

952 uint256 private buyBackUpperLimit = 1 * 10**18;

953

954 mapping(address => bool) public _isBlacklisted;

955

956

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 952

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

951 uint256 public numTokensSellToAddToLiquidity;

952 uint256 private buyBackUpperLimit = 1 * 10**18;

953

954 mapping(address => bool) public _isBlacklisted;

955

956

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1003

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1002 _tTotal = amountOfTokenWei;

1003 _rTotal = (MAX - (MAX % _tTotal));

1004

1005 _rOwned[_msgSender()] = _rTotal;

1006

1007

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 1003

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1002 _tTotal = amountOfTokenWei;

1003 _rTotal = (MAX - (MAX % _tTotal));

1004

1005 _rOwned[_msgSender()] = _rTotal;

1006

1007

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1016

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1015 _maxTxAmount = _tTotal.mul(setMxTxPer).div(

1016 10**4

1017);

1018 _maxWalletAmount = _tTotal.mul(setMxWalletPer).div(

1019 10**4

1020

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1019

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1018 _maxWalletAmount = _tTotal.mul(setMxWalletPer).div(

1019 10**4

1020);

1021

1022 numTokensSellToAddToLiquidity = amountOfTokenWei.mul(1).div(1000);

1023

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1172

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1171 require(_isExcluded[account], "Already excluded");

1172 for (uint256 i = 0; i < _excluded.length; i++) {

1173 if (_excluded[i] == account) {

1174 _excluded[i] = _excluded[_excluded.length - 1];

1175 _tOwned[account] = 0;

1176

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1174

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1173 if (_excluded[i] == account) {

1174 _excluded[i] = _excluded[_excluded.length - 1];

1175 _tOwned[account] = 0;

1176 _isExcluded[account] = false;

1177 _excluded.pop();

1178

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1216

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1215 function setBuybackUpperLimit(uint256 buyBackLimit) external onlyOwner() {

1216 buyBackUpperLimit = buyBackLimit * 10**18;

1217 }

1218

1219 function setMaxTxPercent(uint256 maxTxPercent) external onlyOwner() {

1220

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1216

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1215 function setBuybackUpperLimit(uint256 buyBackLimit) external onlyOwner() {

1216 buyBackUpperLimit = buyBackLimit * 10**18;

1217 }

1218

1219 function setMaxTxPercent(uint256 maxTxPercent) external onlyOwner() {

1220

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1222

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1221 _maxTxAmount = _tTotal.mul(maxTxPercent).div(

1222 10**4

1223);

1224 }

1225

1226

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1229

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1228 _maxWalletAmount = _tTotal.mul(maxWalletPercent).div(

1229 10**4

1230);

1231 }

1232

1233

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1299

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1298 uint256 tSupply = _tTotal;

1299 for (uint256 i = 0; i < _excluded.length; i++) {

1300 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

1301 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1302 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1303

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1318

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1317 return _amount.mul(_taxFee).div(

1318 10**2

1319);

1320 }

1321

1322

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1323

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1322 function calculateLiquidityFee(uint256 _amount) private view returns (uint256) {

1323 return _amount.mul(_liquidityFee + _burnFee + _walletFee + _buybackFee +

_walletCharityFee + _rewardFee).div(

1324 10**2

1325);

1326 }

1327

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1323

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1322 function calculateLiquidityFee(uint256 _amount) private view returns (uint256) {

1323 return _amount.mul(_liquidityFee + _burnFee + _walletFee + _buybackFee +

_walletCharityFee + _rewardFee).div(

1324 10**2

1325);

1326 }

1327

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1323

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1322 function calculateLiquidityFee(uint256 _amount) private view returns (uint256) {

1323 return _amount.mul(_liquidityFee + _burnFee + _walletFee + _buybackFee +

_walletCharityFee + _rewardFee).div(

1324 10**2

1325);

1326 }

1327

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1323

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1322 function calculateLiquidityFee(uint256 _amount) private view returns (uint256) {

1323 return _amount.mul(_liquidityFee + _burnFee + _walletFee + _buybackFee +

_walletCharityFee + _rewardFee).div(

1324 10**2

1325);

1326 }

1327

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1323

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1322 function calculateLiquidityFee(uint256 _amount) private view returns (uint256) {

1323 return _amount.mul(_liquidityFee + _burnFee + _walletFee + _buybackFee +

_walletCharityFee + _rewardFee).div(

1324 10**2

1325);

1326 }

1327

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1324

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1323 return _amount.mul(_liquidityFee + _burnFee + _walletFee + _buybackFee +

_walletCharityFee + _rewardFee).div(

1324 10**2

1325);

1326 }

1327

1328

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1385

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1384 uint256 contractBalanceRecepient = balanceOf(to);

1385 require(contractBalanceRecepient + amount <= _maxWalletAmount, "Exceeds maximum

wallet amount");

1386 }

1387 // is the token balance of this contract address over the min number of

1388 // tokens that we need to initiate a swap + liquidity lock?

1389

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1411

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1410 uint256 balance = address(this).balance;

1411 if (balance > uint256(1 * 10**18)) {

1412

1413 if (balance > buyBackUpperLimit)

1414 balance = buyBackUpperLimit;

1415

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1411

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1410 uint256 balance = address(this).balance;

1411 if (balance > uint256(1 * 10**18)) {

1412

1413 if (balance > buyBackUpperLimit)

1414 balance = buyBackUpperLimit;

1415

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1450

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1449 //burn

1450 uint8 totFee = _burnFee + _walletFee + _liquidityFee + _buybackFee +

_walletCharityFee + _rewardFee;

1451 uint256 spentAmount = 0;

1452 uint256 totSpentAmount = 0;

1453 if(_burnFee != 0){

1454

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1450

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1449 //burn

1450 uint8 totFee = _burnFee + _walletFee + _liquidityFee + _buybackFee +

_walletCharityFee + _rewardFee;

1451 uint256 spentAmount = 0;

1452 uint256 totSpentAmount = 0;

1453 if(_burnFee != 0){

1454

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1450

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1449 //burn

1450 uint8 totFee = _burnFee + _walletFee + _liquidityFee + _buybackFee +

_walletCharityFee + _rewardFee;

1451 uint256 spentAmount = 0;

1452 uint256 totSpentAmount = 0;

1453 if(_burnFee != 0){

1454

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1450

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1449 //burn

1450 uint8 totFee = _burnFee + _walletFee + _liquidityFee + _buybackFee +

_walletCharityFee + _rewardFee;

1451 uint256 spentAmount = 0;

1452 uint256 totSpentAmount = 0;

1453 if(_burnFee != 0){

1454

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1450

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1449 //burn

1450 uint8 totFee = _burnFee + _walletFee + _liquidityFee + _buybackFee +

_walletCharityFee + _rewardFee;

1451 uint256 spentAmount = 0;

1452 uint256 totSpentAmount = 0;

1453 if(_burnFee != 0){

1454

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1474

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1473 }

1474 totSpentAmount = totSpentAmount + spentAmount;

1475 }

1476

1477 if(_buybackFee != 0){

1478

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1480

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1479 swapTokensForBNB(spentAmount);

1480 totSpentAmount = totSpentAmount + spentAmount;

1481 }

1482

1483 if(_walletCharityFee != 0){

1484

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1499

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1498 }

1499 totSpentAmount = totSpentAmount + spentAmount;

1500 }

1501

1502 if(_rewardFee != 0){

1503

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1508

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1507 distributeDividends(newBalance);

1508 totSpentAmount = totSpentAmount + spentAmount;

1509 }

1510

1511 if(_liquidityFee != 0){

1512

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1708

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1707 magnifiedDividendPerShare = magnifiedDividendPerShare.add(

1708 (amount).mul(magnitude) / _tDividendTotal

1709);

1710 emit DividendsDistributed(amount);

1711

1712

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1757

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1756 return

1757 magnifiedDividendPerShare

1758 .mul(balanceOf(_owner))

1759 .toInt256Safe()

1760 .add(magnifiedDividendCorrections[_owner])

1761

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1779

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1778 function _dmint(address account, uint256 value) internal {

1779 _tDividendTotal = _tDividendTotal + value;

1780 magnifiedDividendCorrections[account] = magnifiedDividendCorrections[account].sub(

1781 (magnifiedDividendPerShare.mul(value)).toInt256Safe()

1782);

1783

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1787

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1786 function _dburn(address account, uint256 value) internal {

1787 _tDividendTotal = _tDividendTotal - value;

1788 magnifiedDividendCorrections[account] = magnifiedDividendCorrections[account].add(

1789 (magnifiedDividendPerShare.mul(value)).toInt256Safe()

1790);

1791

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1956

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1955 while (gasUsed < gas && iterations < numberOfTokenHolders) {

1956 _lastProcessedIndex++;

1957

1958 if (_lastProcessedIndex >= tokenHoldersMap.keys.length) {

1959 _lastProcessedIndex = 0;

1960

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1966

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1965 if (processAccount(payable(account), true)) {

1966 claims++;

1967 }

1968 }

1969 iterations++;

1970

NanoMatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1969

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1968 }

1969 iterations++;

1970 uint256 newGasLeft = gasleft();

1971 if (gasLeft > newGasLeft) {

1972 gasUsed = gasUsed.add(gasLeft.sub(newGasLeft));

1973

NanoMatic | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 375

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

374 uint index = map.indexOf[key];

375 uint lastIndex = map.keys.length - 1;

376 address lastKey = map.keys[lastIndex];

377

378 map.indexOf[lastKey] = index;

379

NanoMatic | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1174

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1173 if (_excluded[i] == account) {

1174 _excluded[i] = _excluded[_excluded.length - 1];

1175 _tOwned[account] = 0;

1176 _isExcluded[account] = false;

1177 _excluded.pop();

1178

NanoMatic | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 849

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "dead" is internal.
Other possible visibility settings are public and private.

Source File
- Token.sol

Locations

848

849 address dead = 0x000000000000000000000000000000000000dEaD;

850

851 uint8 public maxLiqFee = 10;

852 uint8 public maxTaxFee = 10;

853

NanoMatic | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 943

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "walletFeeInBNB" is
internal. Other possible visibility settings are public and private.

Source File
- Token.sol

Locations

942

943 bool walletFeeInBNB = false;

944 bool walletCharityFeeInBNB = false;

945

946 bool inSwapAndLiquify;

947

NanoMatic | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 944

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for
"walletCharityFeeInBNB" is internal. Other possible visibility settings are public and private.

Source File
- Token.sol

Locations

943 bool walletFeeInBNB = false;

944 bool walletCharityFeeInBNB = false;

945

946 bool inSwapAndLiquify;

947 bool public swapAndLiquifyEnabled = true;

948

NanoMatic | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 946

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- Token.sol

Locations

945

946 bool inSwapAndLiquify;

947 bool public swapAndLiquifyEnabled = true;

948

949 uint256 public _maxTxAmount;

950

NanoMatic | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 1424

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- Token.sol

Locations

1423 (uint256 iterations, uint256 claims, uint256 _lastProcessedIndex) = process(gas);

1424 emit ProcessedDividendTracker(iterations, claims, _lastProcessedIndex, true, gas,

tx.origin);

1425 }

1426 }

1427

1428

NanoMatic | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 2007

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- Token.sol

Locations

2006 (uint256 iterations, uint256 claims, uint256 _lastProcessedIndex) = process(gas);

2007 emit ProcessedDividendTracker(iterations, claims, _lastProcessedIndex, false, gas,

tx.origin);

2008 }

2009

2010 function blacklistAddress(address account, bool value) external onlyOwner {

2011

NanoMatic | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 346

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

345 function getKeyAtIndex(Map storage map, uint index) internal view returns (address)

{

346 return map.keys[index];

347 }

348

349

350

NanoMatic | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 376

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

375 uint lastIndex = map.keys.length - 1;

376 address lastKey = map.keys[lastIndex];

377

378 map.indexOf[lastKey] = index;

379 delete map.indexOf[key];

380

NanoMatic | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 381

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

380

381 map.keys[index] = lastKey;

382 map.keys.pop();

383 }

384 }

385

NanoMatic | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1173

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1172 for (uint256 i = 0; i < _excluded.length; i++) {

1173 if (_excluded[i] == account) {

1174 _excluded[i] = _excluded[_excluded.length - 1];

1175 _tOwned[account] = 0;

1176 _isExcluded[account] = false;

1177

NanoMatic | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1174

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1173 if (_excluded[i] == account) {

1174 _excluded[i] = _excluded[_excluded.length - 1];

1175 _tOwned[account] = 0;

1176 _isExcluded[account] = false;

1177 _excluded.pop();

1178

NanoMatic | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1174

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1173 if (_excluded[i] == account) {

1174 _excluded[i] = _excluded[_excluded.length - 1];

1175 _tOwned[account] = 0;

1176 _isExcluded[account] = false;

1177 _excluded.pop();

1178

NanoMatic | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1300

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1299 for (uint256 i = 0; i < _excluded.length; i++) {

1300 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

1301 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1302 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1303 }

1304

NanoMatic | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1300

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1299 for (uint256 i = 0; i < _excluded.length; i++) {

1300 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

1301 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1302 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1303 }

1304

NanoMatic | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1301

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1300 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

1301 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1302 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1303 }

1304 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

1305

NanoMatic | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1302

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1301 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1302 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1303 }

1304 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

1305 return (rSupply, tSupply);

1306

NanoMatic | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1549

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1548 address[] memory path = new address[](2);

1549 path[0] = address(this);

1550 path[1] = pcsV2Router.WETH();

1551

1552 _approve(address(this), address(pcsV2Router), tokenAmount);

1553

NanoMatic | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1550

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1549 path[0] = address(this);

1550 path[1] = pcsV2Router.WETH();

1551

1552 _approve(address(this), address(pcsV2Router), tokenAmount);

1553

1554

NanoMatic | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1567

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1566 address[] memory path = new address[](2);

1567 path[0] = pcsV2Router.WETH();

1568 path[1] = address(this);

1569

1570 // make the swap

1571

NanoMatic | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1568

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1567 path[0] = pcsV2Router.WETH();

1568 path[1] = address(this);

1569

1570 // make the swap

1571 pcsV2Router.swapExactETHForTokensSupportingFeeOnTransferTokens{value: amount}(

1572

NanoMatic | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1581

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1580 address[] memory path = new address[](3);

1581 path[0] = address(this);

1582 path[1] = pcsV2Router.WETH();

1583 path[2] = rewardToken;

1584

1585

NanoMatic | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1582

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1581 path[0] = address(this);

1582 path[1] = pcsV2Router.WETH();

1583 path[2] = rewardToken;

1584

1585 _approve(address(this), address(pcsV2Router), tokenAmount);

1586

NanoMatic | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1583

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1582 path[1] = pcsV2Router.WETH();

1583 path[2] = rewardToken;

1584

1585 _approve(address(this), address(pcsV2Router), tokenAmount);

1586

1587

NanoMatic | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1962

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1961

1962 address account = tokenHoldersMap.keys[_lastProcessedIndex];

1963

1964 if (canAutoClaim(lastClaimTimes[account])) {

1965 if (processAccount(payable(account), true)) {

1966

NanoMatic | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

NanoMatic | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

