oty
ooo
v

Dalarnia

Smart Contract
Audit Report

@ SYSFIXED 21 Oct 2021

£ SYSFIXED

TABLE OF CONTENTS

| Audited Details

- Audited Project
- Blockchain
- Addresses

- Project Website
- Codebase

| Summary

- Contract Summary
- Audit Findings Summary
- Vulnerabilities Summary

| Conclusion

| Audit Results

| Smart Contract Analysis

- Detected Vulnerabilities

| Disclaimer

| About Us

Dalarnia | Security Analysis

£ SYSFIXED

AUDITED DETAILS

| Audited Project

Dalarnia | Security Analysis

Project name

Token ticker

Blockchain

Dalarnia

DAR

Binance Smart Chain

| Addresses

Contract address

0x23ce9e926048273ef83be0a3a8ba9ch6d45cd978

Contract deployer address

0x2e05e17F7ADB5D9C4e4B0aa7D919394A48Bff58B

| Project Website

https://www.minesofdalarnia.com/

| Codebase

https://bscscan.com/address/0x23ce9e€926048273ef83be0a3a8ba9ch6d45cd978#code

https://www.minesofdalarnia.com/
https://bscscan.com/address/0x23ce9e926048273ef83be0a3a8ba9cb6d45cd978#code

@ SYSFIXED Dalarnia | Security Analysis

SUMMARY

It is the year 11,752. The Metagalactic Collective rules most of the known systems—a benevolent but
incomprehensible A. |, known as The Onemind, guides the Collective, ensuring peace and prosperity. The
Onemind has revealed a revolutionary new technology: Terraforming Capsules. These capsules cause a planet
to undergo millions of years of evolution in seconds spontaneously. Even a barren rock will grow an
atmosphere, a thriving ecosystem, and vast underground resources. Three planets in a sector called Dalarnia
have been chosen to undergo the first wave of terraforming experiments. News quickly spread of boundless
riches to be unearthed in these strange new worlds. Any rumors of unexpected side effects, bizarre
underground formations, or abominations in the depths were quickly suppressed. People from across the
Galaxy flocked to the newly terraformed planets, seeking their fortunes in a spacefaring gold rush. As one of
these hopeful miners, you have spent your life savings to travel to a moon on the outskirts of the system.

| Contract Summary

Documentation Quality
Dalarnia provides a very good documentation with standard of solidity base code.
e The technical description is provided clearly and structured and also dont have any high risk issue.
Code Quality
The Overall quality of the basecode is standard.

e Standard solidity basecode and rules are already followed by Dalarnia with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

e SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 149, 179, 201, 202, 236 and 270.

@ SYSFIXED Dalarnia | Security Analysis

CONCLUSION

We have audited the Dalarnia project released on October 2021 to discover issues and identify potential
security vulnerabilities in Dalarnia Project. This process is used to find technical issues and security loopholes
which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the Dalarnia smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues.

@‘S\FSFHEU Dalarnia | Security Analysis

AUDIT RESULT

Article Category Description Result
SWC-100 Functions and state variables visibility should be
Default Visibility SWC-108 set explicitly. Visibility levels should be specified PASS
consciously.
Integer Overflow SRk T If unchecked math is used, all math operations ISSUE
and Underflow should be safe from overflows and underflows. FOUND
Outdated Compiler It is recommended to use a recent version of the
. SWC-102 L . PASS
Version Solidity compiler.
Contracts should be deployed with the same
Floating Pragma SWC-103 compiler version and flags that they have been PASS
tested thoroughly.
Unchecked Call The return value of a message call should be
SWC-104 PASS
Return Value checked.
Unprotected Ether Due to missing or insufficient access controls,
. SWC-105 . i , PASS
Withdrawal malicious parties can withdraw from the contract.
SELFDESTRUCT The contract should not be self-destructible while it
. SWC-106 . PASS
Instruction has funds belonging to users.

Check effect interaction pattern should be followed
Reentrancy SWC-107 . . PASS
if the code performs recursive call.

Uninitialized Uninitialized local storage variables can point to
. SWC-109 i . PASS
Storage Pointer unexpected storage locations in the contract.
L SWC-110 Properly functioning code should never reach a
Assert Violation PASS

SWC-123 failing assert statement.

Deprecated Solidity

. SWC-111 Deprecated built-in functions should never be used. PASS
Functions

Delegate call to Delegatecalls should only be allowed to trusted
SWC-112

PASS
Untrusted Callee addresses.

£ SYSFIXED

DoS (Denial of
Service)

Race Conditions

Authorization
through tx.origin

Block values as a
proxy for time

Signature Unique
ID

Incorrect
Constructor Name

Shadowing State
Variable

Weak Sources of
Randomness

Write to Arbitrary
Storage Location

Incorrect
Inheritance Order

Insufficient Gas
Griefing

Arbitrary Jump
Function

SWC-113
SWC-128

SWC-114

SWC-115

SWC-116

SWC-117
SWC-121
SWC-122

SWC-118

SWC-119

SWC-120

SWC-124

SWC-125

SWC-126

SWC-127

Dalarnia | Security Analysis

Execution of the code should never be blocked by a specific
contract state unless required.

Race Conditions and Transactions Order Dependency
should not be possible.

tx.origin should not be used for authorization.

Block numbers should not be used for time calculations.

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

Constructors are special functions that are called only once
during the contract creation.

State variables should not be shadowed.

Random values should never be generated from Chain
Attributes or be predictable.

The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

£ SYSFIXED

Typographical
Error

Override control
character

Unused variables

Unexpected Ether
balance

Hash Collisions
Variable

Hardcoded gas
amount

Unencrypted
Private Data

SWC-129

SWC-130

SWC-131
SWC-135

SWC-132

SWC-133

SWC-134

SWC-136

Dalarnia | Security Analysis

A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

Contracts can behave erroneously when they strictly assume
a specific Ether balance.

Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

The transfer() and send() functions forward a fixed amount
of 2300 gas.

It is a common misconception that private type variables
cannot be read.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

@sﬁrmm Dalarnia | Security Analysis

SMART CONTRACT ANALYSIS

Started Wednesday Oct 20 2021 02:59:12 GMT+0000 (Coordinated Universal Time)
Finished Thursday Oct 21 2021 00:40:31 GMT+0000 (Coordinated Universal Time)
Mode Standard

Main Source File BEP20Token.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

@‘S‘I"‘SH}I{ED Dalarnia | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 149

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BEP20Token.sol

Locations

148 function add(uint256 a, uint256 b) internal pure returns (uint256) {
149 uint256 ¢ = a + b;

150 require(c >= a, "SafeMath: addition overflow');

151

152 return c;

153

@‘S‘I"‘SH}I{ED Dalarnia | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 179

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BEP20Token.sol

Locations

178 requi re(b <= a, errorMessage);
179 uint256 ¢ = a - b;

180
181 return c;
182 }

183

@‘S‘I"‘SH}I{ED Dalarnia | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 2071

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BEP20Token.sol

Locations

200

201 uint256 ¢ = a * b;

202 require(c / a == b, "SafeMath: multiplication overflow');
203

204 return c;

205

@‘S‘I"‘SH}I{ED Dalarnia | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 202

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BEP20Token.sol

Locations

201 uint256 ¢ = a * b;
202 require(c / a == b, "SafeMath: nultiplication overflow');

203
204 return c;
205 }

206

@‘S‘I"‘SH}I{ED Dalarnia | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 236

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BEP20Token.sol

Locations

235 requi re(b > 0, errorMessage);

236 uint256 ¢ = a/ b;

237 /]l assert(a ==b * ¢c + a %b); // There is no case in which this doesn't hold
238

239 return c;

240

@‘S‘I"‘SH}I{ED Dalarnia | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 270

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BEP20Token.sol

Locations

269 require(b !'= 0, errorMessage);
270 return a % b;

271}
272}
273

274

@‘S‘I"‘SH}I{ED Dalarnia | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below - please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

@‘S‘I"‘SH}I{ED Dalarnia | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

