
Goge

Smart Contract
Audit Report

25 Jan 2023

Goge | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Goge | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Goge GOG BSC

| Addresses

Contract address 0x7154Ea33E38E0f21917956007590A4997b34a105

Contract deployer address 0x6334BAE02114C080F05E6D58b65A1d7926FbbeBc

| Project Website

https://goge.io/

| Codebase

https://bscscan.com/address/0x7154Ea33E38E0f21917956007590A4997b34a105#code

https://goge.io/
https://bscscan.com/address/0x7154Ea33E38E0f21917956007590A4997b34a105#code

Goge | Security Analysis

SUMMARY

A "non-fungible token" set of 10K Goge on the BSC blockchain is offered in several sets. A playful ball-like
character that will introduce you to the memories and real history of World Cups in NFT format and remind you
of past moments, each holder has private and exclusive access to channels, events, individual IP opportunities,
whitelists, NFT and receive benefits across the Goge ecosystem. benefits among them are minting live on the
website, direct buying or selling on opensea, NFTs staking and KYC or audit.

| Contract Summary

Documentation Quality

The Goge project provides a good document and a good contract with standard solidity written contract.

There is a lot of technical description provided by Goge Project

Code Quality

Overall quality code is good and well structured

The official Solidity codes guide is followed.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | Arithmetic operation Issues discovered on lines 119, 299, 325, 356, 378, 385, 397, 398, 400,
401, 402, 478, 534, 535, 546, 547, 548, 562, 564, 588, 590, 594,
SWC-103 | A floating pragma is set on lines 6. The current pragma Solidity directive is ""^0.8.17"". It is
recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary
between builds. This is especially important if you rely on bytecode-level verification of the code.
SWC-103 | State variable visibility is not set on lines 105, 146, 155 .It is best practice to set the visibility
of state variables explicitly. The default visibility for "protections" is internal. Other possible visibility
settings are public and private.
SWC-115 | Use of "tx.origin" as a part of authorization control on lines 439. The index access expression
can cause an exception in case an invalid array index value is used.
SWC-110 | Out of bounds array access on lines 494, 495, 547, 548
SWC-120 | OPotential use of "block.number" as source of randonmness on lines 531

Goge | Security Analysis

CONCLUSION

CONCLUSION

We have audited the Goge Coin which has released on January 2023 to discover issues and identifying
potential security vulnerabilities in Goge Project. This process is used to find bugs, technical issues, and
security loopholes that finds some common issues in the code.

The security audit report produced satisfactory results with a low risk issue on contract project.

The most common issue found in writing code on contracts that do not pose a big risk, writing on contracts is
close to the standard of writing contracts in general. Some of the low issues that were found were assert
violation, a floating pragma is setn and weak sources of the randomness contained in the contract

Goge | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Check-Effect
Interaction

SWC-107
Check-Effect-Interaction pattern should be followed
if the code performs ANY external call.

PASS

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Caller

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

Goge | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization.
ISSUE

FOUND

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Goge | Security Analysis

SMART CONTRACT ANALYSIS

Started Mon Jan 23 2023 05:34:23 GMT+0000 (Coordinated Universal Time)

Finished Tu Jan 24 2023 07:09:06 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File Goge.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

Goge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 119

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Goge.sol

Locations

118 uint8 constant private _decimals = 9;

119 uint256 constant private _tTotal = startingSupply * 10**_decimals;

120 struct Fees {

121 |

Goge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 299

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Goge.sol

Locations

298 if (_allowances[sender][msg.sender] != type(uint256).max) {

299 _allowances[sender][msg.sender] -= amount;

300 }

301 |

Goge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 325

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Goge.sol

Locations

324 if (timeSinceLastPair != 0) {

325 require(block.timestamp - timeSinceLastPair > 3 days, "3 Day cooldown.");

326 }

327 lpPairs[pair] = true;

Goge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 356

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Goge.sol

Locations

355 function getCirculatingSupply() public view returns (uint256) {

356 return (_tTotal - (balanceOf(DEAD) + balanceOf(address(0))));

357 }

358 |

Goge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 378

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Goge.sol

Locations

377 "Cannot exceed maximums.");

378 require(buyFee + sellFee <= maxRoundtripTax, "Cannot exceed roundtrip maximum.");

379 _taxRates.buyFee = buyFee;

380 _taxRates.sellFee = sellFee;

Goge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 385

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Goge.sol

Locations

384 function getTokenAmountAtPriceImpact(uint256 priceImpactInHundreds) external view

returns (uint256) {

385 return((balanceOf(lpPair) * priceImpactInHundreds) / masterTaxDivisor);

386 }

387 |

Goge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 397

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Goge.sol

Locations

396 function setSwapSettings(uint256 thresholdPercent, uint256 thresholdDivisor,

uint256 amountPercent, uint256 amountDivisor) external onlyOwner {

397 swapThreshold = (_tTotal * thresholdPercent) / thresholdDivisor;

398 swapAmount = (_tTotal * amountPercent) / amountDivisor;

399 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

Goge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 398

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Goge.sol

Locations

397 swapThreshold = (_tTotal * thresholdPercent) / thresholdDivisor;

398 swapAmount = (_tTotal * amountPercent) / amountDivisor;

399 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

400 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

Goge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 400

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Goge.sol

Locations

399 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

400 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

401 require(swapAmount >= _tTotal / 1000000, "Cannot be lower than 0.00001% of total

supply.");

402 require(swapThreshold >= _tTotal / 1000000, "Cannot be lower than 0.00001% of total

supply.");

Goge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 401

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Goge.sol

Locations

400 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

401 require(swapAmount >= _tTotal / 1000000, "Cannot be lower than 0.00001% of total

supply.");

402 require(swapThreshold >= _tTotal / 1000000, "Cannot be lower than 0.00001% of total

supply.");

403 }

Goge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 402

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Goge.sol

Locations

401 require(swapAmount >= _tTotal / 1000000, "Cannot be lower than 0.00001% of total

supply.");

402 require(swapThreshold >= _tTotal / 1000000, "Cannot be lower than 0.00001% of total

supply.");

403 }

404 |

Goge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 478

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Goge.sol

Locations

477 uint256 swapAmt = swapAmount;

478 if (piContractSwapsEnabled) { swapAmt = (balanceOf(lpPair) * piSwapPercent) /

masterTaxDivisor; }

479 if (contractTokenBalance >= swapAmt) { contractTokenBalance = swapAmt; }

480 contractSwap(contractTokenBalance);

Goge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 534

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Goge.sol

Locations

533 allowedPresaleExclusion = false;

534 swapThreshold = (balanceOf(lpPair) * 10) / 10000;

535 swapAmount = (balanceOf(lpPair) * 30) / 10000;

536 launchStamp = block.timestamp;

Goge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 535

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Goge.sol

Locations

534 swapThreshold = (balanceOf(lpPair) * 10) / 10000;

535 swapAmount = (balanceOf(lpPair) * 30) / 10000;

536 launchStamp = block.timestamp;

537 }

Goge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 546

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Goge.sol

Locations

545 require(accounts.length == amounts.length, "Lengths do not match.");

546 for (uint16 i = 0; i < accounts.length; i++) {

547 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

548 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

Goge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 547

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Goge.sol

Locations

546 for (uint16 i = 0; i < accounts.length; i++) {

547 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

548 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

549 }

Goge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 548

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Goge.sol

Locations

547 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

548 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

549 }

550 }

Goge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 562

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Goge.sol

Locations

561 }

562 _tOwned[from] -= amount;

563 uint256 amountReceived = (takeFee) ? takeTaxes(from, buy, sell, amount) : amount;

564 _tOwned[to] += amountReceived;

Goge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 564

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Goge.sol

Locations

563 uint256 amountReceived = (takeFee) ? takeTaxes(from, buy, sell, amount) : amount;

564 _tOwned[to] += amountReceived;

565 emit Transfer(from, to, amountReceived);

566 if (!_hasLiqBeenAdded) {

Goge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 588

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Goge.sol

Locations

587 || block.chainid == 56)) { currentFee = protectionValue; }

588 uint256 feeAmount = amount * currentFee / masterTaxDivisor;

589 if (feeAmount > 0) {

590 _tOwned[address(this)] += feeAmount;

Goge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 590

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Goge.sol

Locations

589 if (feeAmount > 0) {

590 _tOwned[address(this)] += feeAmount;

591 emit Transfer(from, address(this), feeAmount);

592 }

Goge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 594

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Goge.sol

Locations

593 }

594 return amount - feeAmount;

595 }

596 }

Goge | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 6

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.9.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Goge.sol

Locations

5 // SPDX-License-Identifier: MIT

6 pragma solidity >=0.6.0 <0.9.0;

7 interface IERC20 {

8 |

Goge | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 105

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "lpPairs" is internal.
Other possible visibility settings are public and private. This is especially important if you rely on bytecode-level
verification of the code.

Source File
- Goge.sol

Locations

104 mapping (address => uint256) private _tOwned;

105 mapping (address => bool) lpPairs;

106 uint256 private timeSinceLastPair = 0;

107 mapping (address => mapping (address => uint256)) private _allowances;

Goge | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 146

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "lpPairs" is internal.
Other possible visibility settings are public and private. This is especially important if you rely on bytecode-level
verification of the code.

Source File
- Goge.sol

Locations

145 address public marketingWallet =

payable(0x9f63626EDc27680f9Fd166BE829Ed97f2f116388);

146 bool inSwap;

147 bool public contractSwapEnabled = false;

148 uint256 public swapThreshold;

Goge | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 155

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "lpPairs" is internal.
Other possible visibility settings are public and private. This is especially important if you rely on bytecode-level
verification of the code.

Source File
- Goge.sol

Locations

154 bool public _hasLiqBeenAdded = false;

155 Protections protections;

156 uint256 public launchStamp;

157 |

Goge | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 439

low SEVERITY
The tx.origin environment variable has been found to influence a control flow decision. Note that using
"tx.origin" as a security control might cause a situation where a user inadvertently authorizes a smart contract
to perform an action on their behalf. It is recommended to use "msg.sender" instead.

Source File
- Goge.sol

Locations

438 && to != _owner

439 && tx.origin != _owner

440 && !_liquidityHolders[to]

441 && !_liquidityHolders[from]

Goge | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 494

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Goge.sol

Locations

493 address[] memory path = new address[](2);

494 path[0] = address(this);

495 path[1] = dexRouter.WETH();

496 |

Goge | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 495

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Goge.sol

Locations

494 path[0] = address(this);

495 path[1] = dexRouter.WETH();

496 try dexRouter.swapExactTokensForETHSupportingFeeOnTransferTokens(

497 |

Goge | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 547

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Goge.sol

Locations

546 for (uint16 i = 0; i < accounts.length; i++) {

547 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

548 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

549 }

Goge | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 548

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Goge.sol

Locations

547 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

548 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

549 }

550 }

Goge | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 531

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- Goge.sol

Locations

530 }

531 try protections.setLaunch(lpPair, uint32(block.number), uint64(block.timestamp),

_decimals) {} catch {}

532 tradingEnabled = true;

533 allowedPresaleExclusion = false;

Goge | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Goge | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

