Loong

Smart Contract
Audit Report

@ SYSFIXED 1 Jan 2023

£ SYSFIXED

TABLE OF CONTENTS

| Audited Details

- Audited Project
- Blockchain
- Addresses

- Project Website
- Codebase

| Summary

- Contract Summary
- Audit Findings Summary
- Vulnerabilities Summary

| Conclusion

| Audit Results

| Smart Contract Analysis

- Detected Vulnerabilities

| Disclaimer

| About Us

Loong | Security Analysis

£ SYSFIXED

AUDITED DETAILS

| Audited Project

Loong | Security Analysis

Project name Token ticker Blockchain
Loong Loong Ethereum
| Addresses

Contract address

0x613Df740e9DeD8d50A044a2B259¢99¢c44C9DD929

Contract deployer address

0x5e41bc5922370522800103F826c3BBI9CD5D83f1a

| Project Website

https://longerc.com/

| Codebase

https://etherscan.io/address/0x613Df740e9DeD8d50A044a2B259¢c99¢c44C9DD929+#code

https://longerc.com/
https://etherscan.io/address/0x613Df740e9DeD8d50A044a2B259c99c44C9DD929#code

@ SYSFIXED Loong | Security Analysis

SUMMARY

Loong "The 120 year old dragon" has come to ERC20.
Join the community on this fresh launch with a team who has done millions of market cap several times!

| Contract Summary

Documentation Quality
Loong provides a very good documentation with standard of solidity base code.
e The technical description is provided clearly and structured and also dont have any high risk issue.
Code Quality
The Overall quality of the basecode is standard.

¢ Standard solidity basecode and rules are already followed by Loong with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

e SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 87,102,110, 111,125,179, 179, 180, 180, 206, 206, 207, 356, 362, 364, 430, 560, 560, 560, 576, 576,
577,581, 581, 582 and 586.

¢ SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 16.

e SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 402, 403, 431 and 587.

@ CYSFIXED Loong | Security Analysis

CONCLUSION

We have audited the Loong project released on January 2023 to discover issues and identify potential security
vulnerabilities in Loong Project. This process is used to find technical issues and security loopholes which
might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the Loong smart contract code do not pose a considerable risk. The writing of the contract
is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set and out of bounds array access which the index access expression
can cause an exception in case of the use of an invalid array index value.

@‘S\FSFHEU Loong | Security Analysis

AUDIT RESULT

Article Category Description Result
SWC-100 Functions and state variables visibility should be
Default Visibility SWC-108 set explicitly. Visibility levels should be specified PASS
consciously.
Integer Overflow SRk T If unchecked math is used, all math operations ISSUE
and Underflow should be safe from overflows and underflows. FOUND
Outdated Compiler It is recommended to use a recent version of the
. SWC-102 L . PASS
Version Solidity compiler.
Contracts should be deployed with the same ISSUE
Floating Pragma SWC-103 compiler version and flags that they have been T
tested thoroughly.
Unchecked Call The return value of a message call should be
SWC-104 PASS
Return Value checked.
Unprotected Ether Due to missing or insufficient access controls,
. SWC-105 . i , PASS
Withdrawal malicious parties can withdraw from the contract.
SELFDESTRUCT The contract should not be self-destructible while it
. SWC-106 . PASS
Instruction has funds belonging to users.

Check effect interaction pattern should be followed
Reentrancy SWC-107)) PASS
if the code performs recursive call.

Uninitialized Uninitialized local storage variables can point to
. SWC-109 i . PASS
Storage Pointer unexpected storage locations in the contract.
L SWC-110 Properly functioning code should never reach a ISSUE
Assert Violation N
SWC-123 failing assert statement. FOUND
Deprecated Solidity o)
. SWC-111 Deprecated built-in functions should never be used. PASS
Functions
Delegate call to Delegatecalls should only be allowed to trusted
SWC-112 PASS

Untrusted Callee addresses.

£ SYSFIXED

DoS (Denial of
Service)

Race Conditions

Authorization
through tx.origin

Block values as a
proxy for time

Signature Unique
ID

Incorrect
Constructor Name

Shadowing State
Variable

Weak Sources of
Randomness

Write to Arbitrary
Storage Location

Incorrect
Inheritance Order

Insufficient Gas
Griefing

Arbitrary Jump
Function

SWC-113
SWC-128

SWC-114

SWC-115

SWC-116

SWC-117
SWC-121
SWC-122

SWC-118

SWC-119

SWC-120

SWC-124

SWC-125

SWC-126

SWC-127

Loong | Security Analysis

Execution of the code should never be blocked by a specific
contract state unless required.

Race Conditions and Transactions Order Dependency
should not be possible.

tx.origin should not be used for authorization.

Block numbers should not be used for time calculations.

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

Constructors are special functions that are called only once
during the contract creation.

State variables should not be shadowed.

Random values should never be generated from Chain
Attributes or be predictable.

The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

£ SYSFIXED

Typographical
Error

Override control
character

Unused variables

Unexpected Ether
balance

Hash Collisions
Variable

Hardcoded gas
amount

Unencrypted
Private Data

SWC-129

SWC-130

SWC-131
SWC-135

SWC-132

SWC-133

SWC-134

SWC-136

Loong | Security Analysis

A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

Contracts can behave erroneously when they strictly assume
a specific Ether balance.

Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

The transfer() and send() functions forward a fixed amount
of 2300 gas.

It is a common misconception that private type variables
cannot be read.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

@sﬁrmm Loong | Security Analysis

SMART CONTRACT ANALYSIS

Started Tuesday Jan 10 2023 22:24:21 GMT+0000 (Coordinated Universal Time)
Finished Wednesday Jan 11 2023 00:23:15 GMT+0000 (Coordinated Universal Time)
Mode Standard

Main Source File Loong.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

£ SYSFIXED

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

@S‘I"‘SFI}I{EI] Loong | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 87

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Loong.sol

Locations

86 function add(uint256 a, uint256 b) internal pure returns (uint256) {
87 uint256 ¢ = a + b;

88 require(c >= a, "SafeMath: addition overflow');

89 return c;

90 }

91

@S‘I"‘SFI}I{EI] Loong | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 102

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Loong.sol

Locations

101 requi re(b <= a, errorMessage);
102 uint256 ¢ = a - b;

103 return c;

104 }

105

106

@S‘I"‘SFI}I{EI] Loong | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED

LINE 110

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Loong.sol

Locations

109 }

110 uint256 ¢ = a * b;

111 require(c / a == b, "SafeMath: multiplication overflow');
112 return c;

113 }

114

@S‘I"‘SFI}I{EI] Loong | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 111

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Loong.sol

Locations

110 uint256 ¢ = a * b;

111 require(c / a == b, "SafeMath: nultiplication overflow');
112 return c;

113}

114

115

@S‘I"‘SFI}I{EI] Loong | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 125

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Loong.sol

Locations

124 requi re(b > 0, errorMessage);
125 uint256 ¢ = a/ b;

126 return c;

127 }

128 }

129

£ SYSFIXED

Loong | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED

LINE 179

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Loong.sol

Locations
178 ui nt 256
179 ui nt 256
180 ui nt 256
181 ui nt 256
182 ui nt 256
183

private constant MAX = ~ui nt 256(0);

private constant _tTotal = 100000000 * 10**9;

private rTotal = (MAX -
private _tFeeTotal;
private _MeeOnBuy = O;

(MAX % tTotal));

£ SYSFIXED

Loong | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED

LINE 179

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Loong.sol

Locations
178 ui nt 256
179 ui nt 256
180 ui nt 256
181 ui nt 256
182 ui nt 256
183

private constant MAX = ~ui nt 256(0);

private constant _tTotal = 100000000 * 10**9;

private rTotal = (MAX -
private _tFeeTotal;
private _MeeOnBuy = O;

(MAX % tTotal));

£ SYSFIXED

Loong | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED

LINE 180

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Loong.sol

Locations
179 Ui nt 256
180 ui nt 256
181 ui nt 256
182 ui nt 256
183 ui nt 256
184

private constant _tTotal = 100000000 * 10**9;
private _rTotal = (MAX - (MAX % tTotal));
private _tFeeTotal;

private _MreeOnBuy = 0;

private _taxFeeOnBuy = 10;

£ SYSFIXED

Loong | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED

LINE 180

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Loong.sol

Locations
179 Ui nt 256
180 ui nt 256
181 ui nt 256
182 ui nt 256
183 ui nt 256
184

private constant _tTotal = 100000000 * 10**9;
private _rTotal = (MAX - (MAX % tTotal));
private _tFeeTotal;

private _MreeOnBuy = 0;

private _taxFeeOnBuy = 10;

@S‘I"‘SFI}I{EI] Loong | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED

LINE 206

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Loong.sol

Locations

205 ui nt 256 public _maxTxAmount = _tTotal;

206 ui nt 256 public _maxWalletSize = _tTotal * 2 / 100;
207 ui nt 256 public _swapTokensAt Anbunt = tTotal / 1000;
208

209 event MaxTxAnount Updat ed(ui nt 256 _nmaxTxAmount) ;

210

@S‘I"‘SFI}I{EI] Loong | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED

LINE 206

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Loong.sol

Locations

205 ui nt 256 public _maxTxAmount = _tTotal;

206 ui nt 256 public _maxWalletSize = _tTotal * 2 / 100;
207 ui nt 256 public _swapTokensAt Anbunt = tTotal / 1000;
208

209 event MaxTxAnount Updat ed(ui nt 256 _nmaxTxAmount) ;

210

@S‘I"‘SFI}I{EI] Loong | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 207

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Loong.sol

Locations

206 ui nt 256 public _maxWalletSize = _tTotal * 2 / 100;
207 ui nt 256 public _swapTokensAt Amount = _tTotal / 1000;
208

209 event MaxTxAnount Updat ed(ui nt 256 _nmaxTxAnount) ;

210 nodi fi er | ockTheSwap {

211

@S‘I"‘SFI}I{EI] Loong | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 356

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Loong.sol

Locations

355 if(to !'= uni swapV2Pair) {
356 requi re(bal anceO (to) + anpbunt < _maxWall et Size, "TOKEN: Bal ance exceeds wal | et

size!");
357 }
358

359 ui nt 256 contract TokenBal ance = bal anceOf (address(this));
360

@S‘I"‘SFI}I{EI] Loong | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 362

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Loong.sol
Locations
361
362 i f (contract TokenBal ance >= _swapTokensAt Anmount *8)
363
364 contract TokenBal ance = _swapTokensAt Anmount * 8;
365 }
366

@S‘I"‘SFI}I{EI] Loong | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 364

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Loong.sol
Locations
363 {
364 cont ract TokenBal ance = _swapTokensAt Anount *8;
365 }
366

367 if (canSwap && !'inSwap && from ! = uni swapV2Pair && swapEnabl ed &&
! _isExcludedFronfee[fron] && ! _isExcludedFronfFee[to]) {
368

@S‘I"‘SFI}I{EI] Loong | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 430

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Loong.sol

Locations

429 function bl ockBots(address[] menory bots_) public onlyOwer {
430 for (uint256 i 0; i < bots_.length; i++) {

431 bots[bots [i]] true;
432 }
433 }

434

@S‘I"‘SFI}I{EI] Loong | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 560

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Loong.sol

Locations

559 _taxFeeOnSel | = taxFeeOnSel | ;

560 ui nt 256 total Fee = _MreeOnBuy+_MreeOnSel | +_t axFeeOnBuy+_t axFeeOnSel | ;
561 require (total Fee <= 25,"Total Fees cannot be nore than 25%);

562 }

563

564

@S‘I"‘SFI}I{EI] Loong | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 560

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Loong.sol

Locations

559 _taxFeeOnSel | = taxFeeOnSel | ;

560 ui nt 256 total Fee = _MreeOnBuy+_MreeOnSel | +_t axFeeOnBuy+_t axFeeOnSel | ;
561 require (total Fee <= 25,"Total Fees cannot be nore than 25%);

562 }

563

564

@S‘I"‘SFI}I{EI] Loong | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 560

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Loong.sol

Locations

559 _taxFeeOnSel | = taxFeeOnSel | ;

560 ui nt 256 total Fee = _MreeOnBuy+_MreeOnSel | +_t axFeeOnBuy+_t axFeeOnSel | ;
561 require (total Fee <= 25,"Total Fees cannot be nore than 25%);

562 }

563

564

@S‘I"‘SFI}I{EI] Loong | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 576

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Loong.sol

Locations

575 function set MaxTxnAnount (ui nt 256 maxTxAmount) public onl yOaner {
576 _maxTxAnmount = _t Tot al *maxTxAnount / 100;

577 require (_maxTxAnount>= _tTotal/100);

578 }

579

580

@S‘I"‘SFI}I{EI] Loong | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 576

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Loong.sol

Locations

575 function set MaxTxnAnount (ui nt 256 maxTxAmount) public onl yOaner {
576 _maxTxAnmount = _t Tot al *maxTxAnount / 100;

577 require (_maxTxAnount>= _tTotal/100);

578 }

579

580

@S‘I"‘SFI}I{EI] Loong | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 577

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Loong.sol

Locations

576 _maxTxAnmount = _t Tot al *maxTxAnount / 100;

577 requi re (_maxTxAmount>= _t Total /100);

578 }

579

580 function set MaxWal | et Si ze(ui nt 256 naxWal | et Si ze) public onl yOmer {
581

@S‘I"‘SFI}I{EI] Loong | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 581

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Loong.sol

Locations

580 function set MaxWal | et Si ze(ui nt 256 nmaxWal | et Si ze) public onl yOamer {
581 _maxWal | et Size = _tTotal *naxWal | et Si ze/ 100;

582 require (_maxWall et Si ze>= _tTotal/100);

583 }

584

585

@S‘I"‘SFI}I{EI] Loong | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 581

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Loong.sol

Locations

580 function set MaxWal | et Si ze(ui nt 256 nmaxWal | et Si ze) public onl yOamer {
581 _maxWal | et Size = _tTotal *naxWal | et Si ze/ 100;

582 require (_maxWall et Si ze>= _tTotal/100);

583 }

584

585

@S‘I"‘SFI}I{EI] Loong | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED

LINE 582

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Loong.sol

Locations

581 _maxWal | et Size = _tTotal *naxWal | et Si ze/ 100;

582 requi re (_maxWalletSize>= _tTotal/100);

583 }

584

585 function excludeMl tipl eAccount sFronfFees(address[] cal |l data accounts, bool
excl uded) public onl yOmer {

586

@S‘I"‘SFI}I{EI] Loong | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 586

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Loong.sol

Locations

585 function excludeMl tipl eAccount sFronfFees(address[] calldata accounts, bool
excl uded) public onl yOmer {

586 for(uint256 i = 0; i < accounts.length; i++) {
587 _i sExcl udedFr onfFee[accounts[i]] = excl uded;
588 }

589 }

590

@‘S\FSFHEU Loong | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 16

low SEVERITY

The current pragma Solidity directive is ""*0.8.9"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Loong.sol

Locations

15 // SPDX-License-ldentifier: Unlicensed

16 pragma solidity ~0.8.9;

17

18 abstract contract Context {

19 function _nsgSender() internal view virtual returns (address) ({
20

@S‘I"‘SFI}I{EI] Loong | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 402

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Loong.sol

Locations

401 address[] nenory path = new address[](2);

402 pat h[0] = address(this);

403 path[1] = uni swapV2Rout er. WETH() ;

404 _approve(address(this), address(uni swapV2Router), tokenAnount);

405 uni swapV2Rout er . swapExact TokensFor ETHSupporti ngFeeOnTr ansf er Tokens(
406

@S‘I"‘SFI}I{EI] Loong | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 403

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Loong.sol

Locations

402 pat h[0] = address(this);

403 pat h[1] = uni swapV2Rout er. WETH() ;

404 _approve(address(this), address(uni swapV2Router), tokenAnount);

405 uni swapV2Rout er . swapExact TokensFor ETHSuppor ti ngFeeOnTr ansf er Tokens(
406 t okenAnount ,

407

@S‘I"‘SFI}I{EI] Loong | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 431

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Loong.sol

Locations

430 for (uint256 i 0; i < bots_.length; i++) {

431 bots[bots_[i]] true;
432}

433 }

434

435

@S‘I"‘SFI}I{EI] Loong | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 587

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File

- Loong.sol

Locations
586 for(uint256 i = 0; i < accounts.length; i++) {
587 _i sExcl udedFronfee[accounts[i]] = excl uded;
588 }
589 }
590

591

@S‘I"‘SFI}I{EI] Loong | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below - please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

@S‘I"‘SFI}I{EI] Loong | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

