
JOJO

Smart Contract
Audit Report

27 Jul 2021

JOJO | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

JOJO | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

JOJO JOJO Binance Smart Chain

| Addresses

Contract address 0x78a499a998bdd5a84cf8b5abe49100d82de12f1c

Contract deployer address 0x5A8097188219D015412EA2cBdd7662CCb29aE5BC

| Project Website

https://jojo.fun/home

| Codebase

https://bscscan.com/address/0x78a499a998bdd5a84cf8b5abe49100d82de12f1c#code

https://jojo.fun/home
https://bscscan.com/address/0x78a499a998bdd5a84cf8b5abe49100d82de12f1c#code

JOJO | Security Analysis

SUMMARY

JOJO is a NFT Metaverse project that is about to run on BSC. JOJO combines MEME, NFT, Metaverse and
SmartTOY to build a world-class pan-entertainment platform.

| Contract Summary

Documentation Quality

JOJO provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by JOJO with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 806.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 111, 123, 136, 137, 148, 158, 172, 189, 204, 205, 223, 240, 258, 278, 298, 781, 781, 781, 781, 782,
782, 810, 810, 810, 810, 811, 811, 811, 811, 850, 850, 946, 948, 1123, 1129, 1135, 1170, 1277 and 948.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 9, 89, 306,
333, 403, 593, 692, 738 and 758.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 947, 948, 948, 1091, 1092, 1171, 1171, 1172 and 1173.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 850 and 1022.

JOJO | Security Analysis

CONCLUSION

We have audited the JOJO project released on July 2021 to discover issues and identify potential security
vulnerabilities in JOJO Project. This process is used to find technical issues and security loopholes which
might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the JOJO smart contract code do not pose a considerable risk. The writing of the contract
is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a state variable visibility is not set, the potential use of
"block.number" as a source of randomness, and out-of-bounds array access which the index access
expression can cause an exception in case of the use of an invalid array index value. The current pragma
Solidity directive is "">=0.6.00.8.0"". Specifying a fixed compiler version is recommended to ensure that the
bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level
verification of the code. The environment variable "block.number" looks like it might be used as a source of
randomness. Note that the values of variables like coinbase, gaslimit, block number, and timestamp are
predictable and can be manipulated by a malicious miner. Also, keep in mind that attackers know hashes of
earlier blocks. Don't use any of those environment variables as sources of randomness, and be aware that
using these variables introduces a certain level of trust in miners.

JOJO | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

JOJO | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

JOJO | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

JOJO | Security Analysis

SMART CONTRACT ANALYSIS

Started Monday Jul 26 2021 05:16:06 GMT+0000 (Coordinated Universal Time)

Finished Tuesday Jul 27 2021 08:18:51 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File JOJO.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 111

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

110 function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {

111 uint256 c = a + b;

112 if (c < a) return (false, 0);

113 return (true, c);

114 }

115

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 123

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

122 if (b > a) return (false, 0);

123 return (true, a - b);

124 }

125

126 /**

127

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 136

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

135 if (a == 0) return (true, 0);

136 uint256 c = a * b;

137 if (c / a != b) return (false, 0);

138 return (true, c);

139 }

140

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 137

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

136 uint256 c = a * b;

137 if (c / a != b) return (false, 0);

138 return (true, c);

139 }

140

141

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 148

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

147 if (b == 0) return (false, 0);

148 return (true, a / b);

149 }

150

151 /**

152

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 158

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

157 if (b == 0) return (false, 0);

158 return (true, a % b);

159 }

160

161 /**

162

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 172

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

171 function add(uint256 a, uint256 b) internal pure returns (uint256) {

172 uint256 c = a + b;

173 require(c >= a, "SafeMath: addition overflow");

174 return c;

175 }

176

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 189

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

188 require(b <= a, "SafeMath: subtraction overflow");

189 return a - b;

190 }

191

192 /**

193

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 204

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

203 if (a == 0) return 0;

204 uint256 c = a * b;

205 require(c / a == b, "SafeMath: multiplication overflow");

206 return c;

207 }

208

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 205

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

204 uint256 c = a * b;

205 require(c / a == b, "SafeMath: multiplication overflow");

206 return c;

207 }

208

209

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 223

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

222 require(b > 0, "SafeMath: division by zero");

223 return a / b;

224 }

225

226 /**

227

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 240

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

239 require(b > 0, "SafeMath: modulo by zero");

240 return a % b;

241 }

242

243 /**

244

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 258

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

257 require(b <= a, errorMessage);

258 return a - b;

259 }

260

261 /**

262

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 278

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

277 require(b > 0, errorMessage);

278 return a / b;

279 }

280

281 /**

282

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 298

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

297 require(b > 0, errorMessage);

298 return a % b;

299 }

300 }

301

302

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 781

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

780 uint256 private constant MAX = ~uint256(0);

781 uint256 private _tTotal = 1000000 * 10**6 * 10**9;

782 uint256 private _rTotal = (MAX - (MAX % _tTotal));

783 uint256 private _tFeeTotal;

784 uint256 private _tPoolTotal;

785

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 781

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

780 uint256 private constant MAX = ~uint256(0);

781 uint256 private _tTotal = 1000000 * 10**6 * 10**9;

782 uint256 private _rTotal = (MAX - (MAX % _tTotal));

783 uint256 private _tFeeTotal;

784 uint256 private _tPoolTotal;

785

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 781

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

780 uint256 private constant MAX = ~uint256(0);

781 uint256 private _tTotal = 1000000 * 10**6 * 10**9;

782 uint256 private _rTotal = (MAX - (MAX % _tTotal));

783 uint256 private _tFeeTotal;

784 uint256 private _tPoolTotal;

785

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 781

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

780 uint256 private constant MAX = ~uint256(0);

781 uint256 private _tTotal = 1000000 * 10**6 * 10**9;

782 uint256 private _rTotal = (MAX - (MAX % _tTotal));

783 uint256 private _tFeeTotal;

784 uint256 private _tPoolTotal;

785

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 782

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

781 uint256 private _tTotal = 1000000 * 10**6 * 10**9;

782 uint256 private _rTotal = (MAX - (MAX % _tTotal));

783 uint256 private _tFeeTotal;

784 uint256 private _tPoolTotal;

785

786

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 782

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

781 uint256 private _tTotal = 1000000 * 10**6 * 10**9;

782 uint256 private _rTotal = (MAX - (MAX % _tTotal));

783 uint256 private _tFeeTotal;

784 uint256 private _tPoolTotal;

785

786

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 810

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

809 // 100e

810 uint256 public _maxTxAmount = 10000 * 10**6 * 10**9;

811 uint256 public numTokensSellToAddToLiquidity = 500 * 10**6 * 10**9;

812

813 // Prevent front run buy

814

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 810

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

809 // 100e

810 uint256 public _maxTxAmount = 10000 * 10**6 * 10**9;

811 uint256 public numTokensSellToAddToLiquidity = 500 * 10**6 * 10**9;

812

813 // Prevent front run buy

814

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 810

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

809 // 100e

810 uint256 public _maxTxAmount = 10000 * 10**6 * 10**9;

811 uint256 public numTokensSellToAddToLiquidity = 500 * 10**6 * 10**9;

812

813 // Prevent front run buy

814

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 810

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

809 // 100e

810 uint256 public _maxTxAmount = 10000 * 10**6 * 10**9;

811 uint256 public numTokensSellToAddToLiquidity = 500 * 10**6 * 10**9;

812

813 // Prevent front run buy

814

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 811

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

810 uint256 public _maxTxAmount = 10000 * 10**6 * 10**9;

811 uint256 public numTokensSellToAddToLiquidity = 500 * 10**6 * 10**9;

812

813 // Prevent front run buy

814 uint256 public startBuyBlock;

815

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 811

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

810 uint256 public _maxTxAmount = 10000 * 10**6 * 10**9;

811 uint256 public numTokensSellToAddToLiquidity = 500 * 10**6 * 10**9;

812

813 // Prevent front run buy

814 uint256 public startBuyBlock;

815

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 811

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

810 uint256 public _maxTxAmount = 10000 * 10**6 * 10**9;

811 uint256 public numTokensSellToAddToLiquidity = 500 * 10**6 * 10**9;

812

813 // Prevent front run buy

814 uint256 public startBuyBlock;

815

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 811

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

810 uint256 public _maxTxAmount = 10000 * 10**6 * 10**9;

811 uint256 public numTokensSellToAddToLiquidity = 500 * 10**6 * 10**9;

812

813 // Prevent front run buy

814 uint256 public startBuyBlock;

815

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 850

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

849

850 startBuyBlock = block.number + 20 * 15;

851 emit Transfer(address(0), _msgSender(), _tTotal);

852 }

853

854

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 850

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

849

850 startBuyBlock = block.number + 20 * 15;

851 emit Transfer(address(0), _msgSender(), _tTotal);

852 }

853

854

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 946

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

945 require(_isExcluded[account], "Account is not excluded");

946 for (uint256 i = 0; i < _excluded.length; i++) {

947 if (_excluded[i] == account) {

948 _excluded[i] = _excluded[_excluded.length - 1];

949 _tOwned[account] = 0;

950

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 948

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

947 if (_excluded[i] == account) {

948 _excluded[i] = _excluded[_excluded.length - 1];

949 _tOwned[account] = 0;

950 _isExcluded[account] = false;

951 _excluded.pop();

952

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1123

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

1122 return _amount.mul(_taxFee).div(

1123 10**2

1124);

1125 }

1126

1127

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1129

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

1128 return _amount.mul(_liquidityFee).div(

1129 10**2

1130);

1131 }

1132

1133

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1135

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

1134 return _amount.mul(_poolFee).div(

1135 10**2

1136);

1137 }

1138

1139

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1170

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

1169 uint256 tSupply = _tTotal;

1170 for (uint256 i = 0; i < _excluded.length; i++) {

1171 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

1172 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1173 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1174

JOJO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1277

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

1276 _maxTxAmount = _tTotal.mul(maxTxPercent).div(

1277 10**2

1278);

1279 }

1280

1281

JOJO | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 948

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- JOJO.sol

Locations

947 if (_excluded[i] == account) {

948 _excluded[i] = _excluded[_excluded.length - 1];

949 _tOwned[account] = 0;

950 _isExcluded[account] = false;

951 _excluded.pop();

952

JOJO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 9

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- JOJO.sol

Locations

8

9 pragma solidity >=0.6.0 <0.8.0;

10

11 /**

12 * @dev Interface of the ERC20 standard as defined in the EIP.

13

JOJO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 89

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- JOJO.sol

Locations

88

89 pragma solidity >=0.6.0 <0.8.0;

90

91 /**

92 * @dev Wrappers over Solidity's arithmetic operations with added overflow

93

JOJO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 306

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- JOJO.sol

Locations

305

306 pragma solidity >=0.6.0 <0.8.0;

307

308 /*

309 * @dev Provides information about the current execution context, including the

310

JOJO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 333

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- JOJO.sol

Locations

332

333 pragma solidity >=0.6.0 <0.8.0;

334

335 /**

336 * @dev Contract module which provides a basic access control mechanism, where

337

JOJO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 403

low SEVERITY
The current pragma Solidity directive is "">=0.6.2<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- JOJO.sol

Locations

402

403 pragma solidity >=0.6.2 <0.8.0;

404

405 /**

406 * @dev Collection of functions related to the address type

407

JOJO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 593

low SEVERITY
The current pragma Solidity directive is "">=0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- JOJO.sol

Locations

592

593 pragma solidity >=0.6.2;

594

595

596 interface IUniswapV2Router01 {

597

JOJO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 692

low SEVERITY
The current pragma Solidity directive is "">=0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- JOJO.sol

Locations

691

692 pragma solidity >=0.6.2;

693

694

695 interface IUniswapV2Router02 is IUniswapV2Router01 {

696

JOJO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 738

low SEVERITY
The current pragma Solidity directive is "">=0.5.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- JOJO.sol

Locations

737

738 pragma solidity >=0.5.0;

739

740 interface IUniswapV2Factory {

741

742

JOJO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 758

low SEVERITY
The current pragma Solidity directive is ""^0.6.12"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- JOJO.sol

Locations

757

758 pragma solidity ^0.6.12;

759

760

761

762

JOJO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 806

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- JOJO.sol

Locations

805

806 bool inSwapAndLiquify;

807 bool public swapAndLiquifyEnabled = true;

808

809 // 100e

810

JOJO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 947

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- JOJO.sol

Locations

946 for (uint256 i = 0; i < _excluded.length; i++) {

947 if (_excluded[i] == account) {

948 _excluded[i] = _excluded[_excluded.length - 1];

949 _tOwned[account] = 0;

950 _isExcluded[account] = false;

951

JOJO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 948

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- JOJO.sol

Locations

947 if (_excluded[i] == account) {

948 _excluded[i] = _excluded[_excluded.length - 1];

949 _tOwned[account] = 0;

950 _isExcluded[account] = false;

951 _excluded.pop();

952

JOJO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 948

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- JOJO.sol

Locations

947 if (_excluded[i] == account) {

948 _excluded[i] = _excluded[_excluded.length - 1];

949 _tOwned[account] = 0;

950 _isExcluded[account] = false;

951 _excluded.pop();

952

JOJO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1091

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- JOJO.sol

Locations

1090 address[] memory path = new address[](2);

1091 path[0] = address(this);

1092 path[1] = uniswapV2Router.WETH();

1093

1094 _approve(address(this), address(uniswapV2Router), tokenAmount);

1095

JOJO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1092

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- JOJO.sol

Locations

1091 path[0] = address(this);

1092 path[1] = uniswapV2Router.WETH();

1093

1094 _approve(address(this), address(uniswapV2Router), tokenAmount);

1095

1096

JOJO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1171

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- JOJO.sol

Locations

1170 for (uint256 i = 0; i < _excluded.length; i++) {

1171 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

1172 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1173 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1174 }

1175

JOJO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1171

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- JOJO.sol

Locations

1170 for (uint256 i = 0; i < _excluded.length; i++) {

1171 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

1172 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1173 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1174 }

1175

JOJO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1172

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- JOJO.sol

Locations

1171 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

1172 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1173 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1174 }

1175 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

1176

JOJO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1173

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- JOJO.sol

Locations

1172 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1173 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1174 }

1175 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

1176 return (rSupply, tSupply);

1177

JOJO | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 850

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- JOJO.sol

Locations

849

850 startBuyBlock = block.number + 20 * 15;

851 emit Transfer(address(0), _msgSender(), _tTotal);

852 }

853

854

JOJO | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1022

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- JOJO.sol

Locations

1021 // Prevent front run buy, uniswap, When the purchase has not started

1022 if(from == uniswapV2Pair && block.number < startBuyBlock){

1023 revert("the purchase has not started");

1024 }

1025 }

1026

JOJO | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

JOJO | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

