
GAMEE

Smart Contract
Audit Report

09 Sep 2021

GAMEE | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

GAMEE | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

GAMEE GMEE Polygon Matic

| Addresses

Contract address 0xcf32822ff397ef82425153a9dcb726e5ff61dca7

Contract deployer address 0x566B788dE3969d35711f6A0Fc543b00ed7260CDc

| Project Website

https://www.gamee.com/token

| Codebase

https://polygonscan.com/address/0xcf32822ff397ef82425153a9dcb726e5ff61dca7#code

https://www.gamee.com/token
https://polygonscan.com/address/0xcf32822ff397ef82425153a9dcb726e5ff61dca7#code

GAMEE | Security Analysis

SUMMARY

The GMEE Token is a utility token designed to be the currency of purchase, utility, and reward in supported
play-to-earn games provided on the GAMEE casual gaming platform.

| Contract Summary

Documentation Quality

GAMEE provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by GAMEE with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 14, 53, 128,
149, 181, 238, 308, 329, 423, 459, 497, 548, 590, 608, 677, 704, 1186, 1195, 1213, 1241, 1307, 1326,
1334, 1342 and 1399.
SWC-115 | tx.origin should not be used for authorization, use msg.sender instead on lines 1372 and
1388.

GAMEE | Security Analysis

CONCLUSION

We have audited the GAMEE project released in September 2021 to discover issues and identify potential
security vulnerabilities in GAMEE Project. This process is used to find technical issues and security loopholes
which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues in the GAMEE smart contract code do not pose a considerable risk. The writing of the contract is
close to the standard of writing contracts in general. The low-risk issues found are some floating pragma is
set, and "tx.origin" as a part of authorization control. Specifying a fixed compiler version is recommended to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. The tx.origin environment variable has been found to influence a
control flow decision. Note that using "tx.origin" as a security control might cause a situation where a user
inadvertently authorizes a smart contract to act on their behalf. It is recommended to use "msg.sender"
instead.

GAMEE | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

PASS

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

PASS

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

GAMEE | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization.
ISSUE

FOUND

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

GAMEE | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

GAMEE | Security Analysis

SMART CONTRACT ANALYSIS

Started Wednesday Sep 08 2021 23:06:55 GMT+0000 (Coordinated Universal Time)

Finished Thursday Sep 09 2021 15:43:55 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File PolygonGMEE.sol

| Detected Issues

ID Title Severity Status

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

GAMEE | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 14

low SEVERITY
The current pragma Solidity directive is "">=0.7.6<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PolygonGMEE.sol

Locations

13

14 pragma solidity >=0.7.6 <0.8.0;

15

16 /**

17 * @dev Upgrades the address type to check if it is a contract.

18

GAMEE | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 53

low SEVERITY
The current pragma Solidity directive is "">=0.7.6<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PolygonGMEE.sol

Locations

52

53 pragma solidity >=0.7.6 <0.8.0;

54

55 /**

56 * @title ERC20Wrapper

57

GAMEE | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 128

low SEVERITY
The current pragma Solidity directive is "">=0.7.6<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PolygonGMEE.sol

Locations

127

128 pragma solidity >=0.7.6 <0.8.0;

129

130 /*

131 * Provides information about the current execution context, including the

132

GAMEE | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 149

low SEVERITY
The current pragma Solidity directive is "">=0.7.6<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PolygonGMEE.sol

Locations

148

149 pragma solidity >=0.7.6 <0.8.0;

150

151 /**

152 * @title ERC-173 Contract Ownership Standard

153

GAMEE | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 181

low SEVERITY
The current pragma Solidity directive is "">=0.7.6<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PolygonGMEE.sol

Locations

180

181 pragma solidity >=0.7.6 <0.8.0;

182

183

184 /**

185

GAMEE | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 238

low SEVERITY
The current pragma Solidity directive is "">=0.7.6<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PolygonGMEE.sol

Locations

237

238 pragma solidity >=0.7.6 <0.8.0;

239

240

241

242

GAMEE | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 308

low SEVERITY
The current pragma Solidity directive is "">=0.7.6<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PolygonGMEE.sol

Locations

307

308 pragma solidity >=0.7.6 <0.8.0;

309

310 /**

311 * @dev Interface of the ERC165 standard, as defined in the

312

GAMEE | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 329

low SEVERITY
The current pragma Solidity directive is "">=0.7.6<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PolygonGMEE.sol

Locations

328

329 pragma solidity >=0.7.6 <0.8.0;

330

331 /**

332 * @title ERC20 Token Standard, basic interface

333

GAMEE | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 423

low SEVERITY
The current pragma Solidity directive is "">=0.7.6<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PolygonGMEE.sol

Locations

422

423 pragma solidity >=0.7.6 <0.8.0;

424

425 /**

426 * @title ERC20 Token Standard, optional extension: Detailed

427

GAMEE | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 459

low SEVERITY
The current pragma Solidity directive is "">=0.7.6<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PolygonGMEE.sol

Locations

458

459 pragma solidity >=0.7.6 <0.8.0;

460

461 /**

462 * @title ERC20 Token Standard, optional extension: Allowance

463

GAMEE | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 497

low SEVERITY
The current pragma Solidity directive is "">=0.7.6<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PolygonGMEE.sol

Locations

496

497 pragma solidity >=0.7.6 <0.8.0;

498

499 /**

500 * @title ERC20 Token Standard, optional extension: Safe Transfers

501

GAMEE | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 548

low SEVERITY
The current pragma Solidity directive is "">=0.7.6<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PolygonGMEE.sol

Locations

547

548 pragma solidity >=0.7.6 <0.8.0;

549

550 /**

551 * @title ERC20 Token Standard, optional extension: Multi Transfers

552

GAMEE | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 590

low SEVERITY
The current pragma Solidity directive is "">=0.7.6<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PolygonGMEE.sol

Locations

589

590 pragma solidity >=0.7.6 <0.8.0;

591

592 /**

593 * @title ERC20 Token Standard, ERC1046 optional extension: Metadata

594

GAMEE | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 608

low SEVERITY
The current pragma Solidity directive is "">=0.7.6<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PolygonGMEE.sol

Locations

607

608 pragma solidity >=0.7.6 <0.8.0;

609

610 /**

611 * @title ERC20 Token Standard, ERC2612 optional extension: permit – 712-signed

approvals

612

GAMEE | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 677

low SEVERITY
The current pragma Solidity directive is "">=0.7.6<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PolygonGMEE.sol

Locations

676

677 pragma solidity >=0.7.6 <0.8.0;

678

679 /**

680 * @title ERC20 Token Standard, Receiver

681

GAMEE | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 704

low SEVERITY
The current pragma Solidity directive is "">=0.7.6<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PolygonGMEE.sol

Locations

703

704 pragma solidity >=0.7.6 <0.8.0;

705

706

707

708

GAMEE | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1186

low SEVERITY
The current pragma Solidity directive is "">=0.7.6<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PolygonGMEE.sol

Locations

1185

1186 pragma solidity >=0.7.6 <0.8.0;

1187

1188 interface IChildToken {

1189 function deposit(address user, bytes calldata depositData) external;

1190

GAMEE | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1195

low SEVERITY
The current pragma Solidity directive is "">=0.7.6<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PolygonGMEE.sol

Locations

1194

1195 pragma solidity >=0.7.6 <0.8.0;

1196

1197

1198 abstract contract ERC20Receiver is IERC20Receiver, IERC165 {

1199

GAMEE | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1213

low SEVERITY
The current pragma Solidity directive is "">=0.7.6<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PolygonGMEE.sol

Locations

1212

1213 pragma solidity >=0.7.6 <0.8.0;

1214

1215

1216 /**

1217

GAMEE | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1241

low SEVERITY
The current pragma Solidity directive is "">=0.7.6<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PolygonGMEE.sol

Locations

1240

1241 pragma solidity >=0.7.6 <0.8.0;

1242

1243

1244 abstract contract ChildERC20 is ERC20, ChildERC20Base {

1245

GAMEE | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1307

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PolygonGMEE.sol

Locations

1306 // File ethereum-universal-

forwarder/src/solc_0.7/ERC2771/UsingAppendedCallData.sol@v0.1.4

1307 pragma solidity ^0.7.0;

1308

1309 abstract contract UsingAppendedCallData {

1310 function _lastAppendedDataAsSender() internal pure virtual returns (address

payable sender) {

1311

GAMEE | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1326

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PolygonGMEE.sol

Locations

1325 // File ethereum-universal-forwarder/src/solc_0.7/ERC2771/IERC2771.sol@v0.1.4

1326 pragma solidity ^0.7.0;

1327

1328 interface IERC2771 {

1329 function isTrustedForwarder(address forwarder) external view returns (bool);

1330

GAMEE | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1334

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PolygonGMEE.sol

Locations

1333 // File ethereum-universal-

forwarder/src/solc_0.7/ERC2771/IForwarderRegistry.sol@v0.1.4

1334 pragma solidity ^0.7.0;

1335

1336 interface IForwarderRegistry {

1337 function isForwarderFor(address, address) external view returns (bool);

1338

GAMEE | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1342

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PolygonGMEE.sol

Locations

1341 // File ethereum-universal-

forwarder/src/solc_0.7/ERC2771/UsingUniversalForwarding.sol@v0.1.4

1342 pragma solidity ^0.7.0;

1343

1344

1345

1346

GAMEE | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1399

low SEVERITY
The current pragma Solidity directive is "">=0.7.6<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PolygonGMEE.sol

Locations

1398

1399 pragma solidity >=0.7.6 <0.8.0;

1400 contract PolygonGMEE is Recoverable, UsingUniversalForwarding, ChildERC20 {

1401 using ERC20Wrapper for IWrappedERC20;

1402

1403

GAMEE | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 1372

low SEVERITY
The tx.origin environment variable has been found to influence a control flow decision. Note that using
"tx.origin" as a security control might cause a situation where a user inadvertently authorizes a smart contract
to perform an action on their behalf. It is recommended to use "msg.sender" instead.

Source File
- PolygonGMEE.sol

Locations

1371 // solhint-disable-next-line avoid-tx-origin

1372 if (msgSender != tx.origin && _forwarderRegistry.isForwarderFor(sender,

msgSender)) {

1373 return sender;

1374 }

1375

1376

GAMEE | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 1388

low SEVERITY
The tx.origin environment variable has been found to influence a control flow decision. Note that using
"tx.origin" as a security control might cause a situation where a user inadvertently authorizes a smart contract
to perform an action on their behalf. It is recommended to use "msg.sender" instead.

Source File
- PolygonGMEE.sol

Locations

1387 // solhint-disable-next-line avoid-tx-origin

1388 if (msgSender != tx.origin &&

_forwarderRegistry.isForwarderFor(_lastAppendedDataAsSender(), msgSender)) {

1389 return _msgDataAssuming20BytesAppendedData();

1390 }

1391 return msg.data;

1392

GAMEE | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

GAMEE | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

