
Datarius Credit

Smart Contract
Audit Report

03 Feb 2018

Datarius Credit | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Datarius Credit | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Datarius Credit DTRC Ethereum

| Addresses

Contract address 0xc20464e0c373486d2b3335576e83a218b1618a5e

Contract deployer address 0xB80FC93f95857A30226Ff4399Ef108Dc0BD5ccC1

| Project Website

https://datarius.io/

| Codebase

https://etherscan.io/address/0xc20464e0c373486d2b3335576e83a218b1618a5e#code

https://datarius.io/
https://etherscan.io/address/0xc20464e0c373486d2b3335576e83a218b1618a5e#code

Datarius Credit | Security Analysis

SUMMARY

Datarius is the first social P2P cryptobank. Our main goal is to demonstrate that fintech can be completely
different. We decided not to impose any services to users. We will provide three listings with the different trust
levels – from the borrowers minimally verified by the system algorithms and to the completely transparent
borrowers, thoroughly reviewed by the project’s Risk Department. Any interested user, at any time, can
personally order one or another related service – in-depth computer evaluation, evaluation by project partners,
evaluation by the Risk Department, evaluation by user-managers. The results will be immediately available to
all other users. Accordingly, one or another application can automatically shift from one listing to another in
keeping with the wishes of the project participants, and not merely as preferred by the submitting user. Thus,
Datarius provides its users with complete freedom of choice both in terms of actions and cost.

| Contract Summary

Documentation Quality

Datarius Credit provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Datarius Credit with the discovery of
several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 55, 56, 57, 58, 59, 136, 206,
52 and 53.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 7.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 33 and 39.
SWC-111 | It is recommended to use alternatives to the deprecated constructions on lines 16, 25, 32, 37,
55, 59, 136 and 206.

Datarius Credit | Security Analysis

CONCLUSION

We have audited the Datarius Credit project released on February 2018 to discover issues and identify potential
security vulnerabilities in Datarius Credit Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the Datarius Credit smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are a floating
pragma is set, a state variable visibility is not set, an assertion violation is triggered and the use of "constant"
state mutability that has been deprecated. It is recommended to use alternatives to the deprecated
constructions.

Datarius Credit | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

PASS

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used.
ISSUE

FOUND

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Datarius Credit | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Datarius Credit | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Datarius Credit | Security Analysis

SMART CONTRACT ANALYSIS

Started Friday Feb 02 2018 21:44:16 GMT+0000 (Coordinated Universal Time)

Finished Saturday Feb 03 2018 21:46:47 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File DatariusToken.sol

| Detected Issues

ID Title Severity Status

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

Datarius Credit | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 55

low SEVERITY
The function definition of "balanceOf" lacks a visibility specifier. Note that the compiler assumes "public"
visibility by default. Function visibility should always be specified explicitly to assure correctness of the code
and improve readability.

Source File
- DatariusToken.sol

Locations

54

55 function balanceOf(address _owner) constant returns (uint);

56 function transfer(address _to, uint _value) returns (bool);

57 function transferFrom(address _from, address _to, uint _value) returns (bool);

58 function approve(address _spender, uint _value) returns (bool);

59

Datarius Credit | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 56

low SEVERITY
The function definition of "transfer" lacks a visibility specifier. Note that the compiler assumes "public" visibility
by default. Function visibility should always be specified explicitly to assure correctness of the code and
improve readability.

Source File
- DatariusToken.sol

Locations

55 function balanceOf(address _owner) constant returns (uint);

56 function transfer(address _to, uint _value) returns (bool);

57 function transferFrom(address _from, address _to, uint _value) returns (bool);

58 function approve(address _spender, uint _value) returns (bool);

59 function allowance(address _owner, address _spender) constant returns (uint);

60

Datarius Credit | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 57

low SEVERITY
The function definition of "transferFrom" lacks a visibility specifier. Note that the compiler assumes "public"
visibility by default. Function visibility should always be specified explicitly to assure correctness of the code
and improve readability.

Source File
- DatariusToken.sol

Locations

56 function transfer(address _to, uint _value) returns (bool);

57 function transferFrom(address _from, address _to, uint _value) returns (bool);

58 function approve(address _spender, uint _value) returns (bool);

59 function allowance(address _owner, address _spender) constant returns (uint);

60

61

Datarius Credit | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 58

low SEVERITY
The function definition of "approve" lacks a visibility specifier. Note that the compiler assumes "public" visibility
by default. Function visibility should always be specified explicitly to assure correctness of the code and
improve readability.

Source File
- DatariusToken.sol

Locations

57 function transferFrom(address _from, address _to, uint _value) returns (bool);

58 function approve(address _spender, uint _value) returns (bool);

59 function allowance(address _owner, address _spender) constant returns (uint);

60

61 event Transfer(address indexed _from, address indexed _to, uint _value);

62

Datarius Credit | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 59

low SEVERITY
The function definition of "allowance" lacks a visibility specifier. Note that the compiler assumes "public"
visibility by default. Function visibility should always be specified explicitly to assure correctness of the code
and improve readability.

Source File
- DatariusToken.sol

Locations

58 function approve(address _spender, uint _value) returns (bool);

59 function allowance(address _owner, address _spender) constant returns (uint);

60

61 event Transfer(address indexed _from, address indexed _to, uint _value);

62 event Approval(address indexed _owner, address indexed _spender, uint _value);

63

Datarius Credit | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 136

low SEVERITY
The function definition of "balanceOf" lacks a visibility specifier. Note that the compiler assumes "public"
visibility by default. Function visibility should always be specified explicitly to assure correctness of the code
and improve readability.

Source File
- DatariusToken.sol

Locations

135 */

136 function balanceOf(address _holder) constant returns (uint) {

137 return balances[_holder];

138 }

139

140

Datarius Credit | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 206

low SEVERITY
The function definition of "allowance" lacks a visibility specifier. Note that the compiler assumes "public"
visibility by default. Function visibility should always be specified explicitly to assure correctness of the code
and improve readability.

Source File
- DatariusToken.sol

Locations

205 */

206 function allowance(address _owner, address _spender) constant returns (uint) {

207 return allowed[_owner][_spender];

208 }

209 }

210

Datarius Credit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 7

low SEVERITY
The current pragma Solidity directive is ""^0.4.15"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- DatariusToken.sol

Locations

6 // Developed by Phenom.Team <info@phenom.team>

7 pragma solidity ^0.4.15;

8

9 /**

10 * @title SafeMath

11

Datarius Credit | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 52

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "balances" is internal.
Other possible visibility settings are public and private.

Source File
- DatariusToken.sol

Locations

51

52 mapping(address => uint) balances;

53 mapping(address => mapping (address => uint)) allowed;

54

55 function balanceOf(address _owner) constant returns (uint);

56

Datarius Credit | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 53

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "allowed" is internal.
Other possible visibility settings are public and private.

Source File
- DatariusToken.sol

Locations

52 mapping(address => uint) balances;

53 mapping(address => mapping (address => uint)) allowed;

54

55 function balanceOf(address _owner) constant returns (uint);

56 function transfer(address _to, uint _value) returns (bool);

57

Datarius Credit | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 33

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- DatariusToken.sol

Locations

32 function sub(uint a, uint b) internal constant returns(uint) {

33 assert(b <= a);

34 return a - b;

35 }

36

37

Datarius Credit | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 39

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- DatariusToken.sol

Locations

38 uint c = a + b;

39 assert(c >= a);

40 return c;

41 }

42 }

43

Datarius Credit | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 16

low SEVERITY
Using "constant" as a state mutability modifier in function "mul" is disallowed as of Solidity version 0.5.0. Use
"view" instead.

Source File
- DatariusToken.sol

Locations

15

16 function mul(uint a, uint b) internal constant returns (uint) {

17 if (a == 0) {

18 return 0;

19 }

20

Datarius Credit | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 25

low SEVERITY
Using "constant" as a state mutability modifier in function "div" is disallowed as of Solidity version 0.5.0. Use
"view" instead.

Source File
- DatariusToken.sol

Locations

24

25 function div(uint a, uint b) internal constant returns(uint) {

26 assert(b > 0);

27 uint c = a / b;

28 assert(a == b * c + a % b);

29

Datarius Credit | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 32

low SEVERITY
Using "constant" as a state mutability modifier in function "sub" is disallowed as of Solidity version 0.5.0. Use
"view" instead.

Source File
- DatariusToken.sol

Locations

31

32 function sub(uint a, uint b) internal constant returns(uint) {

33 assert(b <= a);

34 return a - b;

35 }

36

Datarius Credit | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 37

low SEVERITY
Using "constant" as a state mutability modifier in function "add" is disallowed as of Solidity version 0.5.0. Use
"view" instead.

Source File
- DatariusToken.sol

Locations

36

37 function add(uint a, uint b) internal constant returns(uint) {

38 uint c = a + b;

39 assert(c >= a);

40 return c;

41

Datarius Credit | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 55

low SEVERITY
Using "constant" as a state mutability modifier in function "balanceOf" is disallowed as of Solidity version 0.5.0.
Use "view" instead.

Source File
- DatariusToken.sol

Locations

54

55 function balanceOf(address _owner) constant returns (uint);

56 function transfer(address _to, uint _value) returns (bool);

57 function transferFrom(address _from, address _to, uint _value) returns (bool);

58 function approve(address _spender, uint _value) returns (bool);

59

Datarius Credit | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 59

low SEVERITY
Using "constant" as a state mutability modifier in function "allowance" is disallowed as of Solidity version 0.5.0.
Use "view" instead.

Source File
- DatariusToken.sol

Locations

58 function approve(address _spender, uint _value) returns (bool);

59 function allowance(address _owner, address _spender) constant returns (uint);

60

61 event Transfer(address indexed _from, address indexed _to, uint _value);

62 event Approval(address indexed _owner, address indexed _spender, uint _value);

63

Datarius Credit | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 136

low SEVERITY
Using "constant" as a state mutability modifier in function "balanceOf" is disallowed as of Solidity version 0.5.0.
Use "view" instead.

Source File
- DatariusToken.sol

Locations

135 */

136 function balanceOf(address _holder) constant returns (uint) {

137 return balances[_holder];

138 }

139

140

Datarius Credit | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 206

low SEVERITY
Using "constant" as a state mutability modifier in function "allowance" is disallowed as of Solidity version 0.5.0.
Use "view" instead.

Source File
- DatariusToken.sol

Locations

205 */

206 function allowance(address _owner, address _spender) constant returns (uint) {

207 return allowed[_owner][_spender];

208 }

209 }

210

Datarius Credit | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Datarius Credit | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

