
BabyCAW

Smart Contract
Audit Report

10 Jun 2022

BabyCAW | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

BabyCAW | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

BabyCAW BabyCAW Ethereum

| Addresses

Contract address 0x25cd00d22F2255235Ef6823cdA8ad003Dc68d859

Contract deployer address 0x219Ffad28740628653DAa9447f33210267738D52

| Project Website

https://babycawcoin.com/

| Codebase

https://etherscan.io/address/0x25cd00d22F2255235Ef6823cdA8ad003Dc68d859#code

https://babycawcoin.com/
https://etherscan.io/address/0x25cd00d22F2255235Ef6823cdA8ad003Dc68d859#code

BabyCAW | Security Analysis

SUMMARY

Babycaw is a decentralized DeFi project built on the ethereum blockchain (ERC20). It is inspired by the vision of
Ryoshi (Founder of the $CAW & SHIBA) which is to achieve a truly decentralized and fully autonomous
cryptocurrency project which is solely of teh people, by teh people and for teh people. This ideology is
synonymous to what Abraham Lincoln himself envisioned for democracy which he defined as “a government
of the people, by the people and for the people”.

| Contract Summary

Documentation Quality

BabyCAW provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by BabyCAW with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 62, 74, 84, 85, 97, 109, 216, 466, 466, 467, 467, 498, 498, 510, 510, 624, 659, 661, 803, 804, 805, 806,
884, 901, 974, 974, 974, 974 and 661.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 31.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 625, 660, 661, 661, 750, 751, 885, 885, 886, 887, 1022 and 1023.

BabyCAW | Security Analysis

CONCLUSION

We have audited the BabyCAW project released on June 2022 to discover issues and identify potential security
vulnerabilities in BabyCAW Project. This process is used to find technical issues and security loopholes which
might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the BabyCAW smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set and out of bounds array access which the index access expression
can cause an exception in case of the use of an invalid array index value.

BabyCAW | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

BabyCAW | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

BabyCAW | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

BabyCAW | Security Analysis

SMART CONTRACT ANALYSIS

Started Thursday Jun 09 2022 07:43:21 GMT+0000 (Coordinated Universal Time)

Finished Friday Jun 10 2022 16:36:27 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File BabyCAW.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

BabyCAW | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 62

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

61 function add(uint256 a, uint256 b) internal pure returns (uint256) {

62 uint256 c = a + b;

63 require(c >= a, "SafeMath: addition overflow");

64

65 return c;

66

BabyCAW | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 74

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

73 require(b <= a, errorMessage);

74 uint256 c = a - b;

75

76 return c;

77 }

78

BabyCAW | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 84

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

83

84 uint256 c = a * b;

85 require(c / a == b, "SafeMath: multiplication overflow");

86

87 return c;

88

BabyCAW | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 85

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

84 uint256 c = a * b;

85 require(c / a == b, "SafeMath: multiplication overflow");

86

87 return c;

88 }

89

BabyCAW | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 97

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

96 require(b > 0, errorMessage);

97 uint256 c = a / b;

98 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

99

100 return c;

101

BabyCAW | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 109

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

108 require(b != 0, errorMessage);

109 return a % b;

110 }

111 }

112

113

BabyCAW | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 216

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

215 _owner = address(0);

216 _lockTime = block.timestamp + time;

217 emit OwnershipTransferred(_owner, address(0));

218 }

219

220

BabyCAW | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 466

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

465 uint256 private constant MAX = ~uint256(0);

466 uint256 private _tTotal = 333_333_333_333_333 * 10**18;

467 uint256 private _rTotal = (MAX - (MAX % _tTotal));

468 uint256 private _tFeeTotal;

469

470

BabyCAW | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 466

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

465 uint256 private constant MAX = ~uint256(0);

466 uint256 private _tTotal = 333_333_333_333_333 * 10**18;

467 uint256 private _rTotal = (MAX - (MAX % _tTotal));

468 uint256 private _tFeeTotal;

469

470

BabyCAW | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 467

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

466 uint256 private _tTotal = 333_333_333_333_333 * 10**18;

467 uint256 private _rTotal = (MAX - (MAX % _tTotal));

468 uint256 private _tFeeTotal;

469

470 string private _name = "BabyCAW";

471

BabyCAW | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 467

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

466 uint256 private _tTotal = 333_333_333_333_333 * 10**18;

467 uint256 private _rTotal = (MAX - (MAX % _tTotal));

468 uint256 private _tFeeTotal;

469

470 string private _name = "BabyCAW";

471

BabyCAW | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 498

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

497

498 uint256 public totalSwapableSaleFee = _saleLiquidityFee +_saleMarketingFee +

_saleBuybackFee;

499

500 bool public blacklistMode = true;

501 mapping (address => bool) public isBlacklisted;

502

BabyCAW | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 498

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

497

498 uint256 public totalSwapableSaleFee = _saleLiquidityFee +_saleMarketingFee +

_saleBuybackFee;

499

500 bool public blacklistMode = true;

501 mapping (address => bool) public isBlacklisted;

502

BabyCAW | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 510

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

509

510 uint256 private minimumTokensBeforeSwap = 100_000 * 10**18;

511

512 IUniswapV2Router02 public immutable uniswapV2Router;

513 address public immutable uniswapV2Pair;

514

BabyCAW | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 510

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

509

510 uint256 private minimumTokensBeforeSwap = 100_000 * 10**18;

511

512 IUniswapV2Router02 public immutable uniswapV2Router;

513 address public immutable uniswapV2Pair;

514

BabyCAW | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 624

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

623 function manage_blacklist(address[] calldata addresses, bool status) public

onlyOwner {

624 for (uint256 i; i < addresses.length; ++i) {

625 isBlacklisted[addresses[i]] = status;

626 }

627 }

628

BabyCAW | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 659

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

658 require(_isExcluded[account], "Account is already excluded");

659 for (uint256 i = 0; i < _excluded.length; i++) {

660 if (_excluded[i] == account) {

661 _excluded[i] = _excluded[_excluded.length - 1];

662 _tOwned[account] = 0;

663

BabyCAW | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 661

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

660 if (_excluded[i] == account) {

661 _excluded[i] = _excluded[_excluded.length - 1];

662 _tOwned[account] = 0;

663 _isExcluded[account] = false;

664 _excluded.pop();

665

BabyCAW | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 803

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

802 if(totalSwapableFee==0) { return; }

803 liquidityTokensCollected += amount.mul(_liquidityFee).div(100);

804 devTokensCollected += amount.mul(_devFee).div(100);

805 marketingTokensCollected += amount.mul(_marketingFee).div(100);

806 buybackTokensCollected += amount.mul(_buybackFee).div(100);

807

BabyCAW | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 804

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

803 liquidityTokensCollected += amount.mul(_liquidityFee).div(100);

804 devTokensCollected += amount.mul(_devFee).div(100);

805 marketingTokensCollected += amount.mul(_marketingFee).div(100);

806 buybackTokensCollected += amount.mul(_buybackFee).div(100);

807 }

808

BabyCAW | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 805

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

804 devTokensCollected += amount.mul(_devFee).div(100);

805 marketingTokensCollected += amount.mul(_marketingFee).div(100);

806 buybackTokensCollected += amount.mul(_buybackFee).div(100);

807 }

808

809

BabyCAW | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 806

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

805 marketingTokensCollected += amount.mul(_marketingFee).div(100);

806 buybackTokensCollected += amount.mul(_buybackFee).div(100);

807 }

808

809

810

BabyCAW | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 884

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

883 uint256 tSupply = _tTotal;

884 for (uint256 i = 0; i < _excluded.length; i++) {

885 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

886 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

887 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

888

BabyCAW | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 901

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

900 function calculateTaxFee(uint256 _amount) private view returns (uint256) {

901 return _amount.mul(_taxFee).div(10**2);

902 }

903

904 function calculateLiquidityFee(uint256 _amount) private view returns (uint256) {

905

BabyCAW | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 974

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

973 _saleBuybackFee = buybackFee;

974 totalSwapableSaleFee = _saleLiquidityFee +_saleMarketingFee + _saleBuybackFee +

_saleTaxFee + _saleDevFee;

975 require(totalSwapableSaleFee <= 10, "Must be less than 10% total");

976 }

977

978

BabyCAW | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 974

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

973 _saleBuybackFee = buybackFee;

974 totalSwapableSaleFee = _saleLiquidityFee +_saleMarketingFee + _saleBuybackFee +

_saleTaxFee + _saleDevFee;

975 require(totalSwapableSaleFee <= 10, "Must be less than 10% total");

976 }

977

978

BabyCAW | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 974

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

973 _saleBuybackFee = buybackFee;

974 totalSwapableSaleFee = _saleLiquidityFee +_saleMarketingFee + _saleBuybackFee +

_saleTaxFee + _saleDevFee;

975 require(totalSwapableSaleFee <= 10, "Must be less than 10% total");

976 }

977

978

BabyCAW | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 974

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

973 _saleBuybackFee = buybackFee;

974 totalSwapableSaleFee = _saleLiquidityFee +_saleMarketingFee + _saleBuybackFee +

_saleTaxFee + _saleDevFee;

975 require(totalSwapableSaleFee <= 10, "Must be less than 10% total");

976 }

977

978

BabyCAW | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 661

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BabyCAW.sol

Locations

660 if (_excluded[i] == account) {

661 _excluded[i] = _excluded[_excluded.length - 1];

662 _tOwned[account] = 0;

663 _isExcluded[account] = false;

664 _excluded.pop();

665

BabyCAW | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 31

low SEVERITY
The current pragma Solidity directive is ""^0.8.14"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BabyCAW.sol

Locations

30

31 pragma solidity ^0.8.14;

32

33 abstract contract Context {

34 function _msgSender() internal view virtual returns (address payable) {

35

BabyCAW | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 625

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BabyCAW.sol

Locations

624 for (uint256 i; i < addresses.length; ++i) {

625 isBlacklisted[addresses[i]] = status;

626 }

627 }

628

629

BabyCAW | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 660

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BabyCAW.sol

Locations

659 for (uint256 i = 0; i < _excluded.length; i++) {

660 if (_excluded[i] == account) {

661 _excluded[i] = _excluded[_excluded.length - 1];

662 _tOwned[account] = 0;

663 _isExcluded[account] = false;

664

BabyCAW | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 661

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BabyCAW.sol

Locations

660 if (_excluded[i] == account) {

661 _excluded[i] = _excluded[_excluded.length - 1];

662 _tOwned[account] = 0;

663 _isExcluded[account] = false;

664 _excluded.pop();

665

BabyCAW | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 661

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BabyCAW.sol

Locations

660 if (_excluded[i] == account) {

661 _excluded[i] = _excluded[_excluded.length - 1];

662 _tOwned[account] = 0;

663 _isExcluded[account] = false;

664 _excluded.pop();

665

BabyCAW | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 750

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BabyCAW.sol

Locations

749 address[] memory path = new address[](2);

750 path[0] = address(this);

751 path[1] = uniswapV2Router.WETH();

752 _approve(address(this), address(uniswapV2Router), tokenAmount);

753

754

BabyCAW | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 751

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BabyCAW.sol

Locations

750 path[0] = address(this);

751 path[1] = uniswapV2Router.WETH();

752 _approve(address(this), address(uniswapV2Router), tokenAmount);

753

754 // make the swap

755

BabyCAW | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 885

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BabyCAW.sol

Locations

884 for (uint256 i = 0; i < _excluded.length; i++) {

885 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

886 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

887 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

888 }

889

BabyCAW | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 885

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BabyCAW.sol

Locations

884 for (uint256 i = 0; i < _excluded.length; i++) {

885 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

886 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

887 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

888 }

889

BabyCAW | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 886

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BabyCAW.sol

Locations

885 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

886 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

887 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

888 }

889 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

890

BabyCAW | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 887

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BabyCAW.sol

Locations

886 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

887 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

888 }

889 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

890 return (rSupply, tSupply);

891

BabyCAW | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1022

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BabyCAW.sol

Locations

1021 address[] memory path = new address[](2);

1022 path[0] = uniswapV2Router.WETH();

1023 path[1] = address(this);

1024 // make the swap

1025 uniswapV2Router.swapExactETHForTokensSupportingFeeOnTransferTokens{value: amount}(

1026

BabyCAW | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1023

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BabyCAW.sol

Locations

1022 path[0] = uniswapV2Router.WETH();

1023 path[1] = address(this);

1024 // make the swap

1025 uniswapV2Router.swapExactETHForTokensSupportingFeeOnTransferTokens{value: amount}(

1026 0, // accept any amount of Tokens

1027

BabyCAW | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

BabyCAW | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

