
CryptoBunnyClub

Smart Contract
Audit Report

15 Jan 2023

CryptoBunnyClub | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

CryptoBunnyClub | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

CryptoBunnyClub CBC BSC

| Addresses

Contract address 0xF92164dbd3E8D80655124f22f68C9337321F227f

Contract deployer address 0x1d875Aefae30c30F4A152cdc99b78a402177899E

| Project Website

https://cb-club.org/

| Codebase

https://bscscan.com/address/0xF92164dbd3E8D80655124f22f68C9337321F227f#code

https://cb-club.org/
https://bscscan.com/address/0xF92164dbd3E8D80655124f22f68C9337321F227f#code

CryptoBunnyClub | Security Analysis

SUMMARY

The Cryptobunnyclub starts with a low MC , website + own NFT mining page, play 2 earn a game in progress,
for pc, mobile, Xbox, ps4, mint NFT + huge marketing, Tokenomics details, 2% BUSD rewards 2% lp 1%
marketing, jump & run, battle royale, street fight, battle royal function, where 100 bunnies can battle against
each other solo, co-op or as a team of 4, bunnys street fight where you can use tokens and face each other in a
1-vs-1 fight and much more.

| Contract Summary

Documentation Quality

Cryptobunnyclub provides a document with a very good standard of solidity base code.

The technical description is provided clearly and structured and also don't have any risk issue.

Code Quality

The Overall quality of the basecode is GOOD

Standart solidity basecode and rules are already followed with Cryptobunnyclub Project .

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | Arithmetic operation Issues discovered on lines 29, 31, 36, 39, 44, 56, 65, 72, 73, 81, 200, 370,
383, 426, 485, 491, 555, 610, 610, 758, 947, 947, 1090, 1100, 1104, and 200.
SWC-103 | A floating pragma is set on lines 6. The current pragma Solidity directive is ""^0.8.17"". It is
recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary
between builds. This is especially important if you rely on bytecode-level verification of the code.
SWC-108 | State variable visibility is not set on lines 492.It is best practice to set the visibility of state
variables explicitly. The default visibility for "protections" is internal. Other possible visibility settings are
public and private.
SWC-110 | Out of bounds array access on lines 171, 201, 206, 869, 870, 871, 885, 886, and 1096.

CryptoBunnyClub | Security Analysis

CONCLUSION

We have audited the CryptoBunnyClub Coin which has released on January 2023 to discover issues and
identify potential security vulnerabilities in CryptoBunnyClub Project. This process is used to find bugs,
technical issues, and security loopholes that find some common issues in the code.

The security audit report produced satisfactory results with a low risk issue on the contract project.

The most common issue found in writing code on contracts that do not pose a big risk, writing on contracts is
close to the standard of writing contracts in general. Some of the low issues that we found were assert
violation, floating pragma set, and default visibility. The functions and state variables visibility should be set
explicitly. Visibility levels should be specified consciously.

CryptoBunnyClub | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Check-Effect
Interaction

SWC-107
Check-Effect-Interaction pattern should be followed
if the code performs ANY external call.

PASS

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Caller

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

CryptoBunnyClub | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to inherit
contracts from more /general/ to more /specific/.

PASS

CryptoBunnyClub | Security Analysis

SMART CONTRACT ANALYSIS

Started Sat Jan 14 2023 04:10:17 GMT+0000 (Coordinated Universal Time)

Finished Sun Jan 15 2023 05:12:27 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File Bunny.Sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

CryptoBunnyClub | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 29

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Bunny.Sol

Locations

28 function mul(int256 a, int256 b) internal pure returns (int256) {

29 int256 c = a * b;

30 require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

31 require((b == 0) || (c / b == a));

32 return c;

CryptoBunnyClub | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 31

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Bunny.Sol

Locations

30 require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

31 require((b == 0) || (c / b == a));

32 return c;

33 }

34 function div(int256 a, int256 b) internal pure returns (int256) {

CryptoBunnyClub | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 36

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Bunny.Sol

Locations

35 require(b != -1 || a != MIN_INT256);

36 return a / b;

37 }

38 function sub(int256 a, int256 b) internal pure returns (int256) {

39 int256 c = a - b;

CryptoBunnyClub | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 39

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Bunny.Sol

Locations

38 function sub(int256 a, int256 b) internal pure returns (int256) {

39 int256 c = a - b;

40 require((b >= 0 && c <= a) || (b < 0 && c > a));

41 return c;

42 }

CryptoBunnyClub | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 44

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Bunny.Sol

Locations

43 function add(int256 a, int256 b) internal pure returns (int256) {

44 int256 c = a + b;

45 require((b >= 0 && c >= a) || (b < 0 && c < a));

46 return c;

47 }

CryptoBunnyClub | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 56

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Bunny.Sol

Locations

55 function add(uint256 a, uint256 b) internal pure returns (uint256) {

56 uint256 c = a + b;

57 require(c >= a, "SafeMath: addition overflow");

58 return c;

59 }

CryptoBunnyClub | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 65

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Bunny.Sol

Locations

64 require(b <= a, errorMessage);

65 uint256 c = a - b;

66 return c;

67 }

68 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

CryptoBunnyClub | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 72

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Bunny.Sol

Locations

71 }

72 uint256 c = a * b;

73 require(c / a == b, "SafeMath: multiplication overflow");

74 return c;

75 }

CryptoBunnyClub | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 73

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Bunny.Sol

Locations

72 uint256 c = a * b;

73 require(c / a == b, "SafeMath: multiplication overflow");

74 return c;

75 }

76 function div(uint256 a, uint256 b) internal pure returns (uint256) {

CryptoBunnyClub | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 81

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Bunny.Sol

Locations

80 require(b > 0, errorMessage);

81 uint256 c = a / b;

82 return c;

83 }

84

CryptoBunnyClub | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 200

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Bunny.Sol

Locations

199 uint index = map.indexOf[key];

200 uint lastIndex = map.keys.length - 1;

201 address lastKey = map.keys[lastIndex];

202

203 map.indexOf[lastKey] = index;

CryptoBunnyClub | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 370

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Bunny.Sol

Locations

369 // see https://github.com/ethereum/EIPs/issues/1726#issuecomment-472352728

370 uint256 constant internal magnitude = 2**128;

371 uint256 internal magnifiedDividendPerShare;

372 mapping(address => int256) internal magnifiedDividendCorrections;

373 mapping(address => uint256) internal withdrawnDividends;

CryptoBunnyClub | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 383

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Bunny.Sol

Locations

382 magnifiedDividendPerShare = magnifiedDividendPerShare.add(

383 (amount).mul(magnitude) / totalSupply()

384);

385 emit DividendsDistributed(msg.sender, amount);

386

CryptoBunnyClub | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 426

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Bunny.Sol

Locations

425 function accumulativeDividendOf(address _owner) public view override

returns(uint256) {

426 return magnifiedDividendPerShare.mul(balanceOf(_owner)).toInt256Safe()

427 .add(magnifiedDividendCorrections[_owner]).toUint256Safe() / magnitude;

428 }

429

CryptoBunnyClub | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 485

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Bunny.Sol

Locations

484 uint256 public _previousTotalFees = totalFees;

485 uint256 public swapTokensAtAmount = 100000 * (10**18);

486 address public _marketingWalletAddress =

0x3785a6fCC98dA2a768646403fe8E2671C98bB94F;

487 uint256 public gasForProcessing = 300000;

488

CryptoBunnyClub | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 491

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Bunny.Sol

Locations

490 uint256 public maxTransferAmountRate = 300; //divisor 10000 => for 3%

491 uint256 public _maxWalletBalance = 3000000 * 10 ** 18;

492 mapping(address => bool) excludedFromAntiWhale;

493 mapping(address => bool) private _isExcludedFromMaxWallet;

494 mapping (address => bool) public automatedMarketMakerPairs;

CryptoBunnyClub | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 555

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Bunny.Sol

Locations

554

555 _mint(_msgSender(), 100000000 * (10**18));

556

557 }

558

CryptoBunnyClub | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 610

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Bunny.Sol

Locations

609 function setMaxBalance(uint256 maxBalancePercent) external onlyOwner {

610 _maxWalletBalance = maxBalancePercent * 10 ** 18;

611 }

612

613 function includeAndExcludedFromMaxWallet(address account, bool value) public

onlyOwner {

CryptoBunnyClub | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 610

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Bunny.Sol

Locations

609 function setMaxBalance(uint256 maxBalancePercent) external onlyOwner {

610 _maxWalletBalance = maxBalancePercent * 10 ** 18;

611 }

612

613 function includeAndExcludedFromMaxWallet(address account, bool value) public

onlyOwner {

CryptoBunnyClub | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 758

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Bunny.Sol

Locations

757 uint256 currentBalance = balanceOf(to);

758 require(_isExcludedFromMaxWallet[to] || (currentBalance + amount <=

_maxWalletBalance),

759 "ERC20: Reached max wallet holding");

760 }

761

CryptoBunnyClub | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 947

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Bunny.Sol

Locations

946 claimWait = 3600; // one hour

947 minimumTokenBalanceForDividends = 1 * (10**18); //must hold 1+ tokens

948 }

949

950 function _transfer(address, address, uint256) internal override {

CryptoBunnyClub | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 947

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Bunny.Sol

Locations

946 claimWait = 3600; // one hour

947 minimumTokenBalanceForDividends = 1 * (10**18); //must hold 1+ tokens

948 }

949

950 function _transfer(address, address, uint256) internal override {

CryptoBunnyClub | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1090

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Bunny.Sol

Locations

1089 while(gasUsed < gas && iterations < numberOfTokenHolders) {

1090 _lastProcessedIndex++;

1091

1092 if(_lastProcessedIndex >= tokenHoldersMap.keys.length) {

1093 _lastProcessedIndex = 0;

CryptoBunnyClub | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1100

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Bunny.Sol

Locations

1099 if(processAccount(payable(account), true)) {

1100 claims++;

1101 }

1102 }

1103

CryptoBunnyClub | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1104

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Bunny.Sol

Locations

1103

1104 iterations++;

1105

1106 uint256 newGasLeft = gasleft();

1107

CryptoBunnyClub | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 200

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Bunny.Sol

Locations

199 uint index = map.indexOf[key];

200 uint lastIndex = map.keys.length - 1;

201 address lastKey = map.keys[lastIndex];

202

203 map.indexOf[lastKey] = index;

CryptoBunnyClub | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 6

low SEVERITY
The current pragma Solidity directive is ""^0.6.12"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Bunny.Sol

Locations

5 // SPDX-License-Identifier: Unlicensed

6 pragma solidity ^0.6.12;

7

8 abstract contract Context {

9 function _msgSender() internal view virtual returns (address) {

CryptoBunnyClub | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 492

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for
"excludedFromAntiWhale" is internal. Other possible visibility settings are public and private.

Source File
- Bunny.Sol

Locations

491 uint256 public _maxWalletBalance = 3000000 * 10 ** 18;

492 mapping(address => bool) excludedFromAntiWhale;

493 mapping(address => bool) private _isExcludedFromMaxWallet;

494 mapping (address => bool) public automatedMarketMakerPairs;

495

CryptoBunnyClub | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 171

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Bunny.Sol

Locations

170 function getKeyAtIndex(Map storage map, uint index) public view returns (address) {

171 return map.keys[index];

172 }

173

174

CryptoBunnyClub | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 201

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Bunny.Sol

Locations

200 uint lastIndex = map.keys.length - 1;

201 address lastKey = map.keys[lastIndex];

202

203 map.indexOf[lastKey] = index;

204 delete map.indexOf[key];

CryptoBunnyClub | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 206

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Bunny.Sol

Locations

205

206 map.keys[index] = lastKey;

207 map.keys.pop();

208 }

209 }

CryptoBunnyClub | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 869

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Bunny.Sol

Locations

868 address[] memory path = new address[](3);

869 path[0] = address(this);

870 path[1] = uniswapV2Router.WETH();

871 path[2] = BUSD;

872 _approve(address(this), address(uniswapV2Router), tokenAmount);

CryptoBunnyClub | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 870

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Bunny.Sol

Locations

869 path[0] = address(this);

870 path[1] = uniswapV2Router.WETH();

871 path[2] = BUSD;

872 _approve(address(this), address(uniswapV2Router), tokenAmount);

873 uniswapV2Router.swapExactTokensForTokensSupportingFeeOnTransferTokens(

CryptoBunnyClub | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 871

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Bunny.Sol

Locations

870 path[1] = uniswapV2Router.WETH();

871 path[2] = BUSD;

872 _approve(address(this), address(uniswapV2Router), tokenAmount);

873 uniswapV2Router.swapExactTokensForTokensSupportingFeeOnTransferTokens(

874 tokenAmount,

CryptoBunnyClub | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 885

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Bunny.Sol

Locations

884 require(path.length <= 2, "fail");

885 path[0] = address(this);

886 path[1] = uniswapV2Router.WETH();

887 _approve(address(this), address(uniswapV2Router), tokenAmount);

888 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

CryptoBunnyClub | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 886

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Bunny.Sol

Locations

885 path[0] = address(this);

886 path[1] = uniswapV2Router.WETH();

887 _approve(address(this), address(uniswapV2Router), tokenAmount);

888 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

889 tokenAmount,

CryptoBunnyClub | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1096

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Bunny.Sol

Locations

1095

1096 address account = tokenHoldersMap.keys[_lastProcessedIndex];

1097

1098 if(canAutoClaim(lastClaimTimes[account])) {

1099 if(processAccount(payable(account), true)) {

CryptoBunnyClub | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

CryptoBunnyClub | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

