
PriceAI

Smart Contract
Audit Report

27 Jan 2023

PriceAI | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

PriceAI | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

PriceAI PRICE Binance Smart Chain

| Addresses

Contract address 0xb69edbD0527F448b650676C7085E15a7422791c5

Contract deployer address 0x8134b687be5752eFF8361B663030420D47648bfF

| Project Website

https://priceai.ai/

| Codebase

https://bscscan.com/address/0xb69edbD0527F448b650676C7085E15a7422791c5#code

https://priceai.ai/
https://bscscan.com/address/0xb69edbD0527F448b650676C7085E15a7422791c5#code

PriceAI | Security Analysis

SUMMARY

PriceAI is a revolutionary platform that uses advanced AI and zkSNARKs technology for privacy-preserving
DeFi price feeds. Our platform features include advanced data privacy and control and complete financial
autonomy. Join the revolution in decentralized finance.

| Contract Summary

Documentation Quality

PriceAI provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standart solidity basecode and rules are already followed with PriceAI with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 191.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 164, 242, 314, 316, 324, 325, 336, 337, 342, 344, 348, 375, 378, 379, 392, 398 and 412.
SWC-110 | It is recommended to use use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 354 and 355.
SWC-115 | tx.origin should not be used for authorization, use msg.sender instead on lines 259.

PriceAI | Security Analysis

CONCLUSION

We have audited the PriceAI project released on January 2023 to discover issues and identify potential security
vulnerabilities in PriceAI Project. This process is used to find technical issues and security loopholes which
might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the PriceAI smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-level issues found are some
arithmetic operation issues, a state variable visibility is not set, the use of "tx.origin" as a part of authorization
control, and out of bounds array access which the index access expression can cause an exception in case of
use of an invalid array index value.

PriceAI | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

PASS

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Caller

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

PriceAI | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization.
ISSUE

FOUND

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

PriceAI | Security Analysis

SMART CONTRACT ANALYSIS

Started Thursday Jan 26 2023 23:56:47 GMT+0000 (Coordinated Universal Time)

Finished Friday Jan 27 2023 19:43:27 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File PRICE.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

PriceAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 164

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PRICE.sol

Locations

163 uint256 private swapThreshold;

164 uint256 constant public _totalSupply = 5e8 * 10**18;

165 uint256 constant public transferfee = 0;

166 uint256 constant public fee_denominator = 10000;

167

168

PriceAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 242

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PRICE.sol

Locations

241 if (_allowances[sender][msg.sender] != type(uint256).max) {

242 _allowances[sender][msg.sender] -= amount;

243 }

244

245 return _transfer(sender, recipient, amount);

246

PriceAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 314

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PRICE.sol

Locations

313

314 balance[from] -= amount;

315 uint256 amountAfterFee = (takeFee) ? takeTaxes(from, is_buy(from, to),

is_sell(from, to), amount) : amount;

316 balance[to] += amountAfterFee;

317 emit Transfer(from, to, amountAfterFee);

318

PriceAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 316

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PRICE.sol

Locations

315 uint256 amountAfterFee = (takeFee) ? takeTaxes(from, is_buy(from, to),

is_sell(from, to), amount) : amount;

316 balance[to] += amountAfterFee;

317 emit Transfer(from, to, amountAfterFee);

318

319 return true;

320

PriceAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 324

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PRICE.sol

Locations

323

324 balance[from] -= amount;

325 balance[to] += amount;

326 return true;

327 }

328

PriceAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 325

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PRICE.sol

Locations

324 balance[from] -= amount;

325 balance[to] += amount;

326 return true;

327 }

328

329

PriceAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 336

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PRICE.sol

Locations

335 uint256 fee;

336 if (isbuy) fee = buyTaxes.marketing + buyTaxes.rewards;

337 else if (issell) fee = sellTaxes.marketing + sellTaxes.rewards;

338 else fee = transferfee;

339

340

PriceAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 337

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PRICE.sol

Locations

336 if (isbuy) fee = buyTaxes.marketing + buyTaxes.rewards;

337 else if (issell) fee = sellTaxes.marketing + sellTaxes.rewards;

338 else fee = transferfee;

339

340 if (fee == 0) return amount;

341

PriceAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 342

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PRICE.sol

Locations

341

342 uint256 feeAmount = amount * fee / fee_denominator;

343 if (feeAmount > 0) {

344 balance[address(this)] += feeAmount;

345 emit Transfer(from, address(this), feeAmount);

346

PriceAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 344

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PRICE.sol

Locations

343 if (feeAmount > 0) {

344 balance[address(this)] += feeAmount;

345 emit Transfer(from, address(this), feeAmount);

346

347 }

348

PriceAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 348

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PRICE.sol

Locations

347 }

348 return amount - feeAmount;

349 }

350

351 function internalSwap(uint256 contractTokenBalance) internal inSwapFlag {

352

PriceAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 375

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PRICE.sol

Locations

374 uint256 rewardsBNB = 0;

375 uint256 totalTax = sellTaxes.marketing + sellTaxes.rewards;

376

377 if (totalTax > 0) {

378 marketingBNB = bnbInContract * sellTaxes.marketing / totalTax;

379

PriceAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 378

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PRICE.sol

Locations

377 if (totalTax > 0) {

378 marketingBNB = bnbInContract * sellTaxes.marketing / totalTax;

379 rewardsBNB = bnbInContract - marketingBNB;

380 }

381

382

PriceAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 379

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PRICE.sol

Locations

378 marketingBNB = bnbInContract * sellTaxes.marketing / totalTax;

379 rewardsBNB = bnbInContract - marketingBNB;

380 }

381

382 bool success;

383

PriceAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 392

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PRICE.sol

Locations

391 function updateBuyFeeAmount(uint256 _marketingFee, uint256 _rewardsFee) external

onlyOwner {

392 require((_marketingFee + _rewardsFee) < maxBuyFee, "Total should be less

maxBuyFee");

393 buyTaxes.marketing = _marketingFee;

394 buyTaxes.rewards = _rewardsFee;

395 }

396

PriceAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 398

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PRICE.sol

Locations

397 function updateSellFeeAmount(uint256 _marketingFee, uint256 _rewardsFee) external

onlyOwner {

398 require((_marketingFee + _rewardsFee) < maxSellFee, "Total should be less

maxSellFee");

399 sellTaxes.marketing = _marketingFee;

400 sellTaxes.rewards = _rewardsFee;

401 }

402

PriceAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 412

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PRICE.sol

Locations

411 require(!isTradingEnabled, "Trading already enabled");

412 swapThreshold = (balanceOf(lpPair)) / 100000;

413 isTradingEnabled = true;

414 }

415

416

PriceAI | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 191

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwap" is internal.
Other possible visibility settings are public and private.

Source File
- PRICE.sol

Locations

190 bool public LiquidityAdded = false;

191 bool inSwap;

192

193 modifier inSwapFlag {

194 inSwap = true;

195

PriceAI | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 259

low SEVERITY
The tx.origin environment variable has been found to influence a control flow decision. Note that using
"tx.origin" as a security control might cause a situation where a user inadvertently authorizes a smart contract
to perform an action on their behalf. It is recommended to use "msg.sender" instead.

Source File
- PRICE.sol

Locations

258 bool isLimited = ins != owner()

259 && out != owner() && tx.origin != owner() // any transaction with no direct

interaction from owner will be accepted

260 && msg.sender != owner()

261 && !liquidityAdd[ins] && !liquidityAdd[out] && out != DEAD && out != address(0) &&

out != address(this);

262 return isLimited;

263

PriceAI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 354

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- PRICE.sol

Locations

353 address[] memory path = new address[](2);

354 path[0] = address(this);

355 path[1] = swapRouter.WETH();

356

357 if (_allowances[address(this)][address(swapRouter)] != type(uint256).max) {

358

PriceAI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 355

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- PRICE.sol

Locations

354 path[0] = address(this);

355 path[1] = swapRouter.WETH();

356

357 if (_allowances[address(this)][address(swapRouter)] != type(uint256).max) {

358 _allowances[address(this)][address(swapRouter)] = type(uint256).max;

359

PriceAI | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

PriceAI | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

