
FIT Token

Smart Contract
Audit Report

03 May 2022

FIT Token | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

FIT Token | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

FIT Token FIT Binance Smart Chain

| Addresses

Contract address 0x77922a521182a719a48ba650ac2a040269888888

Contract deployer address 0xad80314c566Be4Bacbb3992F844faE914D9Fd31d

| Project Website

https://calo.run/

| Codebase

https://bscscan.com/address/0x77922a521182a719a48ba650ac2a040269888888#contracts

https://calo.run/
https://bscscan.com/address/0x77922a521182a719a48ba650ac2a040269888888#contracts

FIT Token | Security Analysis

SUMMARY

Calo Metaverse blockchain system provides you chances to work out on a daily basis either in single or world
challenge mode. We also record your training results and convert your moving movement into valuable
rewards. You can either hold the Tokens and NFTs earned to use in-app or cash out for profit. The more you
practice, the more rewards you get; that is the motivation that pushes us forward to move our bodies so as to
gain both beneficial health and passive income

| Contract Summary

Documentation Quality

FIT Token provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by FIT Token with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 1531, 1532, 1533, 1536 and
1537.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 35, 53, 72, 73, 90, 106, 121, 135, 149, 163, 179, 202, 225, 251, 281, 282, 286, 287, 287, 288, 303, 317,
317, 320, 320, 320, 1264, 1294, 1330, 1332, 1353, 1354, 1379, 1381, 1433, 1542, 1549, 1622 and 1631.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 11, 260, 333,
438, 465, 500, 661, 687, 944, 1035, 1063, 1483 and 1519.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 287, 318, 319, 321, 321, 1623 and 1632.
SWC-115 | tx.origin should not be used for authorization, use msg.sender instead on lines 1559, 1560
and 1561.

FIT Token | Security Analysis

CONCLUSION

We have audited the FIT Token project released on May 2022 to discover issues and identify potential security
vulnerabilities in the FIT Token Project. This process is used to find technical issues and security loopholes
which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the FIT Token smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a state variable visibility is not set, use of "tx.origin" as a part of
authorization control, and out-of-bounds array access which the index access expression can cause an
exception in case of an invalid array index value. The current pragma Solidity directive is ""^0.8.0"". Specifying a
fixed compiler version is recommended to ensure that the bytecode produced does not vary between builds.
This is especially important if you rely on bytecode-level verification of the code. It is best practice to set the
visibility of state variables explicitly. The default visibility for "buyFeeRate" is internal. Other possible visibility
settings are public and private. Using "tx.origin" as a security control can lead to authorization bypass
vulnerabilities. Consider using "msg.sender" unless you know what you are doing.

FIT Token | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

FIT Token | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization.
ISSUE

FOUND

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

FIT Token | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

FIT Token | Security Analysis

SMART CONTRACT ANALYSIS

Started Monday May 02 2022 01:39:20 GMT+0000 (Coordinated Universal Time)

Finished Tuesday May 03 2022 20:04:13 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File FITToken.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "--" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 35

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

34 unchecked {

35 uint256 c = a + b;

36 if (c < a) return (false, 0);

37 return (true, c);

38 }

39

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 53

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

52 if (b > a) return (false, 0);

53 return (true, a - b);

54 }

55 }

56

57

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 72

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

71 if (a == 0) return (true, 0);

72 uint256 c = a * b;

73 if (c / a != b) return (false, 0);

74 return (true, c);

75 }

76

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 73

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

72 uint256 c = a * b;

73 if (c / a != b) return (false, 0);

74 return (true, c);

75 }

76 }

77

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 90

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

89 if (b == 0) return (false, 0);

90 return (true, a / b);

91 }

92 }

93

94

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 106

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

105 if (b == 0) return (false, 0);

106 return (true, a % b);

107 }

108 }

109

110

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 121

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

120 function add(uint256 a, uint256 b) internal pure returns (uint256) {

121 return a + b;

122 }

123

124 /**

125

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 135

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

134 function sub(uint256 a, uint256 b) internal pure returns (uint256) {

135 return a - b;

136 }

137

138 /**

139

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 149

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

148 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

149 return a * b;

150 }

151

152 /**

153

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 163

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

162 function div(uint256 a, uint256 b) internal pure returns (uint256) {

163 return a / b;

164 }

165

166 /**

167

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 179

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

178 function mod(uint256 a, uint256 b) internal pure returns (uint256) {

179 return a % b;

180 }

181

182 /**

183

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 202

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

201 require(b <= a, errorMessage);

202 return a - b;

203 }

204 }

205

206

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 225

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

224 require(b > 0, errorMessage);

225 return a / b;

226 }

227 }

228

229

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 251

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

250 require(b > 0, errorMessage);

251 return a % b;

252 }

253 }

254 }

255

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 281

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

280 while (temp != 0) {

281 digits++;

282 temp /= 10;

283 }

284 bytes memory buffer = new bytes(digits);

285

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/=" DISCOVERED
LINE 282

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

281 digits++;

282 temp /= 10;

283 }

284 bytes memory buffer = new bytes(digits);

285 while (value != 0) {

286

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 286

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

285 while (value != 0) {

286 digits -= 1;

287 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

288 value /= 10;

289 }

290

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 287

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

286 digits -= 1;

287 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

288 value /= 10;

289 }

290 return string(buffer);

291

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 287

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

286 digits -= 1;

287 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

288 value /= 10;

289 }

290 return string(buffer);

291

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/=" DISCOVERED
LINE 288

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

287 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

288 value /= 10;

289 }

290 return string(buffer);

291 }

292

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 303

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

302 while (temp != 0) {

303 length++;

304 temp >>= 8;

305 }

306 return toHexString(value, length);

307

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 317

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

316 {

317 bytes memory buffer = new bytes(2 * length + 2);

318 buffer[0] = "0";

319 buffer[1] = "x";

320 for (uint256 i = 2 * length + 1; i > 1; --i) {

321

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 317

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

316 {

317 bytes memory buffer = new bytes(2 * length + 2);

318 buffer[0] = "0";

319 buffer[1] = "x";

320 for (uint256 i = 2 * length + 1; i > 1; --i) {

321

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 320

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

319 buffer[1] = "x";

320 for (uint256 i = 2 * length + 1; i > 1; --i) {

321 buffer[i] = _HEX_SYMBOLS[value & 0xf];

322 value >>= 4;

323 }

324

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 320

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

319 buffer[1] = "x";

320 for (uint256 i = 2 * length + 1; i > 1; --i) {

321 buffer[i] = _HEX_SYMBOLS[value & 0xf];

322 value >>= 4;

323 }

324

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "--" DISCOVERED
LINE 320

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

319 buffer[1] = "x";

320 for (uint256 i = 2 * length + 1; i > 1; --i) {

321 buffer[i] = _HEX_SYMBOLS[value & 0xf];

322 value >>= 4;

323 }

324

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1264

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

1263 address owner = _msgSender();

1264 _approve(owner, spender, _allowances[owner][spender] + addedValue);

1265 return true;

1266 }

1267

1268

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1294

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

1293 unchecked {

1294 _approve(owner, spender, currentAllowance - subtractedValue);

1295 }

1296

1297 return true;

1298

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1330

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

1329 unchecked {

1330 _balances[from] = fromBalance - amount;

1331 }

1332 _balances[to] += amount;

1333

1334

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1332

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

1331 }

1332 _balances[to] += amount;

1333

1334 emit Transfer(from, to, amount);

1335

1336

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1353

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

1352

1353 _totalSupply += amount;

1354 _balances[account] += amount;

1355 emit Transfer(address(0), account, amount);

1356

1357

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1354

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

1353 _totalSupply += amount;

1354 _balances[account] += amount;

1355 emit Transfer(address(0), account, amount);

1356

1357 _afterTokenTransfer(address(0), account, amount);

1358

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1379

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

1378 unchecked {

1379 _balances[account] = accountBalance - amount;

1380 }

1381 _totalSupply -= amount;

1382

1383

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 1381

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

1380 }

1381 _totalSupply -= amount;

1382

1383 emit Transfer(account, address(0), amount);

1384

1385

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1433

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

1432 unchecked {

1433 _approve(owner, spender, currentAllowance - amount);

1434 }

1435 }

1436 }

1437

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1542

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

1541 require(

1542 lastSwapTimestamp[receipient] + antiBotTime < block.timestamp,

1543 "Anti front running bot"

1544);

1545 lastSwapTimestamp[receipient] = block.timestamp;

1546

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1549

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

1548 require(

1549 lastSwapTimestamp[sender] + antiBotTime < block.timestamp,

1550 "Anti front running bot"

1551);

1552 lastSwapTimestamp[sender] = block.timestamp;

1553

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1622

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

1621 {

1622 for (uint256 i = 0; i < addresses.length; i++) {

1623 lpAddresses[addresses[i]] = true;

1624 }

1625 }

1626

FIT Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1631

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FITToken.sol

Locations

1630 {

1631 for (uint256 i = 0; i < addresses.length; i++) {

1632 blacklist[addresses[i]] = isBlacklist;

1633 }

1634 }

1635

FIT Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 11

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- FITToken.sol

Locations

10

11 pragma solidity ^0.8.0;

12

13 // CAUTION

14 // This version of SafeMath should only be used with Solidity 0.8 or later,

15

FIT Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 260

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- FITToken.sol

Locations

259

260 pragma solidity ^0.8.0;

261

262 /**

263 * @dev String operations.

264

FIT Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 333

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- FITToken.sol

Locations

332

333 pragma solidity ^0.8.0;

334

335 /**

336 * @dev External interface of AccessControl declared to support ERC165 detection.

337

FIT Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 438

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- FITToken.sol

Locations

437

438 pragma solidity ^0.8.0;

439

440 /**

441 * @dev Interface of the ERC165 standard, as defined in the

442

FIT Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 465

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- FITToken.sol

Locations

464

465 pragma solidity ^0.8.0;

466

467 /**

468 * @dev Implementation of the {IERC165} interface.

469

FIT Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 500

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- FITToken.sol

Locations

499

500 pragma solidity ^0.8.0;

501

502 /**

503 * @dev Required interface of an ERC721 compliant contract.

504

FIT Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 661

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- FITToken.sol

Locations

660

661 pragma solidity ^0.8.0;

662

663 /**

664 * @dev Provides information about the current execution context, including the

665

FIT Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 687

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- FITToken.sol

Locations

686

687 pragma solidity ^0.8.0;

688

689 /**

690 * @dev Contract module that allows children to implement role-based access

691

FIT Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 944

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- FITToken.sol

Locations

943

944 pragma solidity ^0.8.0;

945

946 /**

947 * @dev Interface of the ERC20 standard as defined in the EIP.

948

FIT Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1035

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- FITToken.sol

Locations

1034

1035 pragma solidity ^0.8.0;

1036

1037 /**

1038 * @dev Interface for the optional metadata functions from the ERC20 standard.

1039

FIT Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1063

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- FITToken.sol

Locations

1062

1063 pragma solidity ^0.8.0;

1064

1065 /**

1066 * @dev Implementation of the {IERC20} interface.

1067

FIT Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1483

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- FITToken.sol

Locations

1482

1483 pragma solidity ^0.8.0;

1484

1485 /**

1486 * @dev Extension of {ERC20} that allows token holders to destroy both their own

1487

FIT Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1519

low SEVERITY
The current pragma Solidity directive is ""^0.8.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- FITToken.sol

Locations

1518

1519 pragma solidity ^0.8.2;

1520

1521 contract FITToken is ERC20Burnable, AccessControl {

1522 using SafeMath for uint256;

1523

FIT Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1531

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "buyFeeRate" is
internal. Other possible visibility settings are public and private.

Source File
- FITToken.sol

Locations

1530

1531 uint256 buyFeeRate = 0;

1532 uint256 sellFeeRate = 0;

1533 address teamWallet;

1534 uint256 public antiBotTime = 30 seconds;

1535

FIT Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1532

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "sellFeeRate" is
internal. Other possible visibility settings are public and private.

Source File
- FITToken.sol

Locations

1531 uint256 buyFeeRate = 0;

1532 uint256 sellFeeRate = 0;

1533 address teamWallet;

1534 uint256 public antiBotTime = 30 seconds;

1535 mapping(address => bool) public blacklist;

1536

FIT Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1533

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "teamWallet" is
internal. Other possible visibility settings are public and private.

Source File
- FITToken.sol

Locations

1532 uint256 sellFeeRate = 0;

1533 address teamWallet;

1534 uint256 public antiBotTime = 30 seconds;

1535 mapping(address => bool) public blacklist;

1536 mapping(address => bool) lpAddresses;

1537

FIT Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1536

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "lpAddresses" is
internal. Other possible visibility settings are public and private.

Source File
- FITToken.sol

Locations

1535 mapping(address => bool) public blacklist;

1536 mapping(address => bool) lpAddresses;

1537 mapping(address => uint256) lastSwapTimestamp;

1538

1539 modifier antiFrontRunning(address sender, address receipient) {

1540

FIT Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1537

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "lastSwapTimestamp"
is internal. Other possible visibility settings are public and private.

Source File
- FITToken.sol

Locations

1536 mapping(address => bool) lpAddresses;

1537 mapping(address => uint256) lastSwapTimestamp;

1538

1539 modifier antiFrontRunning(address sender, address receipient) {

1540 if (lpAddresses[sender] == true) {

1541

FIT Token | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 1559

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- FITToken.sol

Locations

1558 constructor() ERC20("FIT Token", "FIT") {

1559 _setupRole(DEFAULT_ADMIN_ROLE, tx.origin);

1560 _setupRole(MINTER_ROLE, tx.origin);

1561 teamWallet = tx.origin;

1562 //create FIT/WBNB pair in Pancake swap

1563

FIT Token | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 1560

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- FITToken.sol

Locations

1559 _setupRole(DEFAULT_ADMIN_ROLE, tx.origin);

1560 _setupRole(MINTER_ROLE, tx.origin);

1561 teamWallet = tx.origin;

1562 //create FIT/WBNB pair in Pancake swap

1563 address pair = IPancakeFactory(PANCAKE_FACTORY_ADDRESS).createPair(

1564

FIT Token | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 1561

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- FITToken.sol

Locations

1560 _setupRole(MINTER_ROLE, tx.origin);

1561 teamWallet = tx.origin;

1562 //create FIT/WBNB pair in Pancake swap

1563 address pair = IPancakeFactory(PANCAKE_FACTORY_ADDRESS).createPair(

1564 address(this),

1565

FIT Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 287

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- FITToken.sol

Locations

286 digits -= 1;

287 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

288 value /= 10;

289 }

290 return string(buffer);

291

FIT Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 318

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- FITToken.sol

Locations

317 bytes memory buffer = new bytes(2 * length + 2);

318 buffer[0] = "0";

319 buffer[1] = "x";

320 for (uint256 i = 2 * length + 1; i > 1; --i) {

321 buffer[i] = _HEX_SYMBOLS[value & 0xf];

322

FIT Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 319

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- FITToken.sol

Locations

318 buffer[0] = "0";

319 buffer[1] = "x";

320 for (uint256 i = 2 * length + 1; i > 1; --i) {

321 buffer[i] = _HEX_SYMBOLS[value & 0xf];

322 value >>= 4;

323

FIT Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 321

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- FITToken.sol

Locations

320 for (uint256 i = 2 * length + 1; i > 1; --i) {

321 buffer[i] = _HEX_SYMBOLS[value & 0xf];

322 value >>= 4;

323 }

324 require(value == 0, "Strings: hex length insufficient");

325

FIT Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 321

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- FITToken.sol

Locations

320 for (uint256 i = 2 * length + 1; i > 1; --i) {

321 buffer[i] = _HEX_SYMBOLS[value & 0xf];

322 value >>= 4;

323 }

324 require(value == 0, "Strings: hex length insufficient");

325

FIT Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1623

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- FITToken.sol

Locations

1622 for (uint256 i = 0; i < addresses.length; i++) {

1623 lpAddresses[addresses[i]] = true;

1624 }

1625 }

1626

1627

FIT Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1632

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- FITToken.sol

Locations

1631 for (uint256 i = 0; i < addresses.length; i++) {

1632 blacklist[addresses[i]] = isBlacklist;

1633 }

1634 }

1635

1636

FIT Token | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

FIT Token | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

