
Howl Finance

Smart Contract
Audit Report

22 Jan 2023

Howl Finance | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Howl Finance | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Howl Finance HOWL BSC

| Addresses

Contract address 0xD0343DF21e5019769456f211f5baF3cFc0A4597C

Contract deployer address 0xEEEedBa6Bfbd03eFE1De85988f9db3a1edeafa52

| Project Website

https://www.howlfinance.com/

| Codebase

https://bscscan.com/address/0xD0343DF21e5019769456f211f5baF3cFc0A4597C#contracts

https://www.howlfinance.com/
https://bscscan.com/address/0xD0343DF21e5019769456f211f5baF3cFc0A4597C#contracts

Howl Finance | Security Analysis

SUMMARY

Howl Finance is a utility token with 7 live usecases. including Liquidity Farming, Staking pools, Swap, Portfolio
for NFT and Tokens Value, NFT BUSD rewards, NFT Rarity and Software as a Service.

| Contract Summary

Documentation Quality

This project has a standard of documentation.

Technical description provided.

Code Quality

The quality of the code in this project is up to standard.

The official Solidity style guide is followed.

Test Scope

Project test coverage is 100% (Via Codebase).

| Audit Findings Summary

Issues Found

SWC-101 | Arithmetic operation issues discovered on lines 21, 31, 40, 41, 50, 199, 201, 202, 215, 236,
300, 305, 317, 357, 383, 413, 415, 416, 432, 434, 435, 436, 456, 464, 472, 481, 503, 519, 520, and 529.
SWC-108 | State variable visibility is not set on lines 191, 205, 218, 219, 220, and 237. It is best practice
to set the visibility of state variables explicitly to public or private.
SWC-110 | Out of bounds array access issues discovered on lines 419, 420, 457, 458, 465, 466, 473, and
474.

Howl Finance | Security Analysis

CONCLUSION

We have audited the Howl Finance project which has released on January 2023 to discover issues and identify
potential security vulnerabilities in Howl Finance Project. This process is used to find technical issues and
security loopholes that find some common issues in the code.

The security audit report produced satisfactory results with low-risk issues.

The most common issue found in writing code on contracts that do not pose a big risk is that writing on
contracts is close to the standard of writing contracts in general. The low-level issue found is a state variable
visibility is not set, and out of bounds array access which the index access expression can cause an exception
in case of use of an invalid array index value.

Howl Finance | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

PASS

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Check-Effect
Interaction

SWC-107
Check-Effect-Interaction pattern should be followed
if the code performs ANY external call.

PASS

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Caller

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

Howl Finance | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to inherit
contracts from more /general/ to more /specific/.

PASS

Howl Finance | Security Analysis

SMART CONTRACT ANALYSIS

Started Sat Jan 21 2023 23:12:43 GMT+0000 (Coordinated Universal Time)

Finished Sun Jan 22 2023 01:32:12 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File HowlFinance.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 21

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

20 function add(uint256 a, uint256 b) internal pure returns (uint256) {

21 uint256 c = a + b;

22 require(c >= a, "SafeMath: addition overflow");

23

24 return c;

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 31

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

30 require(b <= a, errorMessage);

31 uint256 c = a - b;

32

33 return c;

34 }

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 40

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

39

40 uint256 c = a * b;

41 require(c / a == b, "SafeMath: multiplication overflow");

42

43 return c;

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 41

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

40 uint256 c = a * b;

41 require(c / a == b, "SafeMath: multiplication overflow");

42

43 return c;

44 }

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 50

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

49 require(b > 0, errorMessage);

50 uint256 c = a / b;

51 return c;

52 }

53 }

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 199

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

198

199 uint256 public _totalSupply = 1 * 10**9 * 10**_decimals;

200

201 uint256 public _maxTxAmount = _totalSupply / 100; // 1%

202 uint256 public _maxWalletToken = _totalSupply / 50; // 2%

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 201

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

200

201 uint256 public _maxTxAmount = _totalSupply / 100; // 1%

202 uint256 public _maxWalletToken = _totalSupply / 50; // 2%

203

204 mapping (address => uint256) public balanceOf;

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 202

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

201 uint256 public _maxTxAmount = _totalSupply / 100; // 1%

202 uint256 public _maxWalletToken = _totalSupply / 50; // 2%

203

204 mapping (address => uint256) public balanceOf;

205 mapping (address => mapping (address => uint256)) _allowances;

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 215

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

214 uint256 public burnFee = 0;

215 uint256 public totalFee = marketingFee + liquidityFee + buybackFee + burnFee;

216 uint256 public constant feeDenominator = 1000;

217

218 uint256 sellMultiplier = 100;

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 236

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

235 bool public swapEnabled = true;

236 uint256 public swapThreshold = _totalSupply / 1000;

237 bool inSwap;

238 modifier swapping() { inSwap = true; _; inSwap = false; }

239

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 300

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

299 require(maxWallPercent_base10000 >= 10,"Cannot set max wallet less than 0.1%");

300 _maxWalletToken = (_totalSupply * maxWallPercent_base10000) / 10000;

301 emit config_MaxWallet(_maxWalletToken);

302 }

303 function setMaxTxPercent_base10000(uint256 maxTXPercentage_base10000) external

onlyOwner {

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 305

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

304 require(maxTXPercentage_base10000 >= 10,"Cannot set max transaction less than

0.1%");

305 _maxTxAmount = (_totalSupply * maxTXPercentage_base10000) / 10000;

306 emit config_MaxTransaction(_maxTxAmount);

307 }

308

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 317

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

316 if (!authorizations[sender] && !isWalletLimitExempt[sender] &&

!isWalletLimitExempt[recipient] && recipient != pair) {

317 require((balanceOf[recipient] + amount) <= _maxWalletToken,"max wallet limit

reached");

318 }

319

320 // Checks max transaction limit

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 356

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

355

356 uint256 feeAmount = amount.mul(totalFee).mul(multiplier).div(feeDenominator * 100);

357 uint256 burnTokens = feeAmount.mul(burnFee).div(totalFee);

358 uint256 contractTokens = feeAmount.sub(burnTokens);

359

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 383

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

382 if(tokenAddress == pair){

383 require(block.timestamp > launchedAt + 500 days,"Locked for 1 year");

384 }

385

386 if(tokens == 0){

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 413

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

412

413 uint256 totalETHFee = totalFee - burnFee;

414

415 uint256 amountToLiquify = (swapThreshold * liquidityFee)/(totalETHFee * 2);

416 uint256 amountToSwap = swapThreshold - amountToLiquify;

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 415

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

414

415 uint256 amountToLiquify = (swapThreshold * liquidityFee)/(totalETHFee * 2);

416 uint256 amountToSwap = swapThreshold - amountToLiquify;

417

418 address[] memory path = new address[](2);

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 416

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

415 uint256 amountToLiquify = (swapThreshold * liquidityFee)/(totalETHFee * 2);

416 uint256 amountToSwap = swapThreshold - amountToLiquify;

417

418 address[] memory path = new address[](2);

419 path[0] = address(this);

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 432

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

431

432 totalETHFee = totalETHFee - (liquidityFee / 2);

433

434 uint256 amountBNBLiquidity = (amountBNB * liquidityFee) / (totalETHFee * 2);

435 uint256 amountBNBMarketing = (amountBNB * marketingFee) / totalETHFee;

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 434

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

433

434 uint256 amountBNBLiquidity = (amountBNB * liquidityFee) / (totalETHFee * 2);

435 uint256 amountBNBMarketing = (amountBNB * marketingFee) / totalETHFee;

436 uint256 amountBNBbuyback = (amountBNB * buybackFee) / totalETHFee;

437

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 435

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

434 uint256 amountBNBLiquidity = (amountBNB * liquidityFee) / (totalETHFee * 2);

435 uint256 amountBNBMarketing = (amountBNB * marketingFee) / totalETHFee;

436 uint256 amountBNBbuyback = (amountBNB * buybackFee) / totalETHFee;

437

438 payable(marketingFeeReceiver).transfer(amountBNBMarketing);

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 436

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

435 uint256 amountBNBMarketing = (amountBNB * marketingFee) / totalETHFee;

436 uint256 amountBNBbuyback = (amountBNB * buybackFee) / totalETHFee;

437

438 payable(marketingFeeReceiver).transfer(amountBNBMarketing);

439 payable(buybackFeeReceiver).transfer(amountBNBbuyback);

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 456

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

455 require(addresses.length < 501,"GAS Error: max limit is 500 addresses");

456 for (uint256 i=0; i < addresses.length; ++i) {

457 isFeeExempt[addresses[i]] = status;

458 emit Wallet_feeExempt(addresses[i], status);

459 }

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 464

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

463 require(addresses.length < 501,"GAS Error: max limit is 500 addresses");

464 for (uint256 i=0; i < addresses.length; ++i) {

465 isTxLimitExempt[addresses[i]] = status;

466 emit Wallet_txExempt(addresses[i], status);

467 }

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 472

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

471 require(addresses.length < 501,"GAS Error: max limit is 500 addresses");

472 for (uint256 i=0; i < addresses.length; ++i) {

473 isWalletLimitExempt[addresses[i]] = status;

474 emit Wallet_holdingExempt(addresses[i], status);

475 }

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 481

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

480 require(totalFee.mul(sellMultiplier).div(100) <= 150, "Sell tax cannot be more than

15%");

481 require(totalFee.mul(sellMultiplier + buyMultiplier).div(100) <= 200, "Buy+Sell tax

cannot be more than 20%");

482 require(totalFee.mul(transferMultiplier).div(100) <= 100, "Transfer Tax cannot be

more than 10%");

483

484 emit UpdateFee(uint8(totalFee.mul(buyMultiplier).div(100)),

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 503

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

502 burnFee = _burnFee;

503 totalFee = _liquidityFee + _marketingFee + _buybackFee + _burnFee;

504

505 update_fees();

506 }

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 519

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

518 function setSwapBackSettings(bool _enabled, uint256 _amount) external onlyOwner {

519 require(_amount >= 1 * 10**_decimals, "Amount is less than one token");

520 require(_amount < (_totalSupply/10), "Amount too high");

521

522 swapEnabled = _enabled;

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 520

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

519 require(_amount >= 1 * 10**_decimals, "Amount is less than one token");

520 require(_amount < (_totalSupply/10), "Amount too high");

521

522 swapEnabled = _enabled;

523 swapThreshold = _amount;

Howl Finance | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 529

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- HowlFinance.sol

Locations

528 function getCirculatingSupply() public view returns (uint256) {

529 return (_totalSupply - balanceOf[DEAD] - balanceOf[ZERO]);

530 }

531 /*

532 function LPBurn(uint256 percent_base10000) public authorized returns (bool){

Howl Finance | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 191

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "WBNB" is internal.
Other possible visibility settings are public and private.

Source File
- HowlFinance.sol

Locations

190

191 address immutable WBNB;

192 address constant DEAD = 0x000000000000000000000000000000000000dEaD;

193 address constant ZERO = 0x00;

194

Howl Finance | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 205

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_allowances" is
internal. Other possible visibility settings are public and private.

Source File
- HowlFinance.sol

Locations

204 mapping (address => uint256) public balanceOf;

205 mapping (address => mapping (address => uint256)) _allowances;

206

207 mapping (address => bool) public isFeeExempt;

208 mapping (address => bool) public isTxLimitExempt;

Howl Finance | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 218

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "sellMultiplier" is
internal. Other possible visibility settings are public and private.

Source File
- HowlFinance.sol

Locations

217

218 uint256 sellMultiplier = 100;

219 uint256 buyMultiplier = 100;

220 uint256 transferMultiplier = 25;

221

Howl Finance | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 219

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "buyMultiplier" is
internal. Other possible visibility settings are public and private.

Source File
- HowlFinance.sol

Locations

218 uint256 sellMultiplier = 100;

219 uint256 buyMultiplier = 100;

220 uint256 transferMultiplier = 25;

221

222 address public marketingFeeReceiver;

Howl Finance | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 220

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "transferMultiplier" is
internal. Other possible visibility settings are public and private.

Source File
- HowlFinance.sol

Locations

219 uint256 buyMultiplier = 100;

220 uint256 transferMultiplier = 25;

221

222 address public marketingFeeReceiver;

223 address public buybackFeeReceiver;

Howl Finance | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 237

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwap" is internal.
Other possible visibility settings are public and private.

Source File
- HowlFinance.sol

Locations

236 uint256 public swapThreshold = _totalSupply / 1000;

237 bool inSwap;

238 modifier swapping() { inSwap = true; _; inSwap = false; }

239

240 constructor () Auth(msg.sender) {

Howl Finance | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 419

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- HowlFinance.sol

Locations

418 address[] memory path = new address[](2);

419 path[0] = address(this);

420 path[1] = WBNB;

421

422 router.swapExactTokensForETHSupportingFeeOnTransferTokens(

Howl Finance | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 420

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- HowlFinance.sol

Locations

419 path[0] = address(this);

420 path[1] = WBNB;

421

422 router.swapExactTokensForETHSupportingFeeOnTransferTokens(

423 amountToSwap,

Howl Finance | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 457

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- HowlFinance.sol

Locations

456 for (uint256 i=0; i < addresses.length; ++i) {

457 isFeeExempt[addresses[i]] = status;

458 emit Wallet_feeExempt(addresses[i], status);

459 }

460 }

Howl Finance | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 458

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- HowlFinance.sol

Locations

457 isFeeExempt[addresses[i]] = status;

458 emit Wallet_feeExempt(addresses[i], status);

459 }

460 }

461

Howl Finance | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 465

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- HowlFinance.sol

Locations

464 for (uint256 i=0; i < addresses.length; ++i) {

465 isTxLimitExempt[addresses[i]] = status;

466 emit Wallet_txExempt(addresses[i], status);

467 }

468 }

Howl Finance | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 466

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- HowlFinance.sol

Locations

465 isTxLimitExempt[addresses[i]] = status;

466 emit Wallet_txExempt(addresses[i], status);

467 }

468 }

469

Howl Finance | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 473

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- HowlFinance.sol

Locations

472 for (uint256 i=0; i < addresses.length; ++i) {

473 isWalletLimitExempt[addresses[i]] = status;

474 emit Wallet_holdingExempt(addresses[i], status);

475 }

476 }

Howl Finance | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 474

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- HowlFinance.sol

Locations

473 isWalletLimitExempt[addresses[i]] = status;

474 emit Wallet_holdingExempt(addresses[i], status);

475 }

476 }

477

Howl Finance | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Howl Finance | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

