
Shibium

Smart Contract
Audit Report

12 Jan 2023

Shibium | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Shibium | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Shibium SHB Binance Smart Chain

| Addresses

Contract address 0x5642833f097880763F0118C6C50dAfF02Cc6EEc2

Contract deployer address 0x1e22248747c3Ac96b0504957417C52967A68506F

| Project Website

https://www.shibium.finance/

| Codebase

https://bscscan.com/address/0x5642833f097880763F0118C6C50dAfF02Cc6EEc2#code

https://www.shibium.finance/
https://bscscan.com/address/0x5642833f097880763F0118C6C50dAfF02Cc6EEc2#code

Shibium | Security Analysis

SUMMARY

Continuing the success of the Axie Doge, we wants to continue bringing users high-quality products that can
be applied in practice, solving the problems entangled in the Blockchain world. And this project is called
SHIBIUM FINANCE.

| Contract Summary

Documentation Quality

Shibium provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Shibium with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 522, 536, 551, 552, 565, 577, 592, 606, 620, 634, 650, 673, 696, 722, 1148, 1148 and 1148.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 11, 31, 129,
176, 277, 502, 732, 759 and 835.

Shibium | Security Analysis

CONCLUSION

We have audited the Shibium project released on January 2023 to discover issues and identify potential
security vulnerabilities in Shibium Project. This process is used to find technical issues and security loopholes
which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the Shibium smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues and floating pragmas set on multiple lines.

Shibium | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

PASS

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegate calls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

Shibium | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to inherit
contracts from more /general/ to more /specific/.

PASS

Shibium | Security Analysis

SMART CONTRACT ANALYSIS

Started Wednesday Jan 11 2023 11:17:00 GMT+0000 (Coordinated Universal Time)

Finished Thursday Jan 12 2023 11:14:36 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File Shibium.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

Shibium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 522

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibium.sol

Locations

521 unchecked {

522 uint256 c = a + b;

523 if (c < a) return (false, 0);

524 return (true, c);

525 }

526

Shibium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 536

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibium.sol

Locations

535 if (b > a) return (false, 0);

536 return (true, a - b);

537 }

538 }

539

540

Shibium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 551

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibium.sol

Locations

550 if (a == 0) return (true, 0);

551 uint256 c = a * b;

552 if (c / a != b) return (false, 0);

553 return (true, c);

554 }

555

Shibium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 552

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibium.sol

Locations

551 uint256 c = a * b;

552 if (c / a != b) return (false, 0);

553 return (true, c);

554 }

555 }

556

Shibium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 565

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibium.sol

Locations

564 if (b == 0) return (false, 0);

565 return (true, a / b);

566 }

567 }

568

569

Shibium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 577

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibium.sol

Locations

576 if (b == 0) return (false, 0);

577 return (true, a % b);

578 }

579 }

580

581

Shibium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 592

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibium.sol

Locations

591 function add(uint256 a, uint256 b) internal pure returns (uint256) {

592 return a + b;

593 }

594

595 /**

596

Shibium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 606

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibium.sol

Locations

605 function sub(uint256 a, uint256 b) internal pure returns (uint256) {

606 return a - b;

607 }

608

609 /**

610

Shibium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 620

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibium.sol

Locations

619 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

620 return a * b;

621 }

622

623 /**

624

Shibium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 634

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibium.sol

Locations

633 function div(uint256 a, uint256 b) internal pure returns (uint256) {

634 return a / b;

635 }

636

637 /**

638

Shibium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 650

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibium.sol

Locations

649 function mod(uint256 a, uint256 b) internal pure returns (uint256) {

650 return a % b;

651 }

652

653 /**

654

Shibium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 673

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibium.sol

Locations

672 require(b <= a, errorMessage);

673 return a - b;

674 }

675 }

676

677

Shibium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 696

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibium.sol

Locations

695 require(b > 0, errorMessage);

696 return a / b;

697 }

698 }

699

700

Shibium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 722

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibium.sol

Locations

721 require(b > 0, errorMessage);

722 return a % b;

723 }

724 }

725 }

726

Shibium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1148

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibium.sol

Locations

1147 using Address for address;

1148 uint256 public constant maxSupply = 10**11 * 10**18;

1149 IUniswapV2Router02 public uniswapV2Router;

1150 address public uniswapV2Pair;

1151 uint256 public constant marketingSellFee = 4;

1152

Shibium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1148

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibium.sol

Locations

1147 using Address for address;

1148 uint256 public constant maxSupply = 10**11 * 10**18;

1149 IUniswapV2Router02 public uniswapV2Router;

1150 address public uniswapV2Pair;

1151 uint256 public constant marketingSellFee = 4;

1152

Shibium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1148

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Shibium.sol

Locations

1147 using Address for address;

1148 uint256 public constant maxSupply = 10**11 * 10**18;

1149 IUniswapV2Router02 public uniswapV2Router;

1150 address public uniswapV2Pair;

1151 uint256 public constant marketingSellFee = 4;

1152

Shibium | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 11

low SEVERITY
The current pragma Solidity directive is "">=0.5.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Shibium.sol

Locations

10

11 pragma solidity >=0.5.0;

12

13 interface IUniswapV2Factory {

14 event PairCreated(address indexed token0, address indexed token1, address pair,

uint);

15

Shibium | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 31

low SEVERITY
The current pragma Solidity directive is "">=0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Shibium.sol

Locations

30

31 pragma solidity >=0.6.2;

32

33 interface IUniswapV2Router01 {

34 function factory() external pure returns (address);

35

Shibium | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 129

low SEVERITY
The current pragma Solidity directive is "">=0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Shibium.sol

Locations

128

129 pragma solidity >=0.6.2;

130

131

132 interface IUniswapV2Router02 is IUniswapV2Router01 {

133

Shibium | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 176

low SEVERITY
The current pragma Solidity directive is "">=0.4.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Shibium.sol

Locations

175 //SPDX-License-Identifier: MIT

176 pragma solidity >=0.4.0;

177

178 interface IERC20 {

179 /**

180

Shibium | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 277

low SEVERITY
The current pragma Solidity directive is ""^0.8.1"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Shibium.sol

Locations

276

277 pragma solidity ^0.8.1;

278

279 /**

280 * @dev Collection of functions related to the address type

281

Shibium | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 502

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Shibium.sol

Locations

501

502 pragma solidity ^0.8.0;

503

504 // CAUTION

505 // This version of SafeMath should only be used with Solidity 0.8 or later,

506

Shibium | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 732

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Shibium.sol

Locations

731

732 pragma solidity ^0.8.0;

733

734 /**

735 * @dev Provides information about the current execution context, including the

736

Shibium | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 759

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Shibium.sol

Locations

758

759 pragma solidity ^0.8.0;

760

761

762 /**

763

Shibium | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 835

low SEVERITY
The current pragma Solidity directive is "">=0.4.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Shibium.sol

Locations

834

835 pragma solidity >=0.4.0;

836

837 /**

838 * @dev Implementation of the {IERC20} interface.

839

Shibium | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Shibium | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

