
Core AI

Smart Contract
Audit Report

05 Feb 2023

Core AI | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Core AI | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Core AI CoreAi Binance Smart Chain

| Addresses

Contract address 0x4BD0cf33AA7C6F75Fb4b70438656FFABa2E5986c

Contract deployer address 0x68014a2adC8B950548faDaeD325C5EC88F39e4e5

| Project Website

https://www.coreai.tech/

| Codebase

https://bscscan.com/address/0x4BD0cf33AA7C6F75Fb4b70438656FFABa2E5986c#code

https://www.coreai.tech/
https://bscscan.com/address/0x4BD0cf33AA7C6F75Fb4b70438656FFABa2E5986c#code

Core AI | Security Analysis

SUMMARY

CoreAI is an auto trading solution. CoreAI is the next revolution of Auto trading that’s integrated with artificial
intelligence. Trading is not a thing that can be taken overnight, but with CoreAI, it’ll be possible. Our solution
focused on support user to prevent lost and gain profit in trading in the fastest way. CoreAI will be the second
ChatGPT in trading that will go live in the end of Q1-2023.

| Contract Summary

Documentation Quality

Core AI provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Core AI with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 668, 684, 699, 721, 723, 735, 736, 750, 752, 839, 839, 840, 942, 964, 964, 965, 981 and 1004.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 993 and 994.

Core AI | Security Analysis

CONCLUSION

We have audited the Core AI project released on February 2023 to discover issues and identify potential
security vulnerabilities in Core AI Project. This process is used to find technical issues and security loopholes
which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the Core AI smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues and out of bounds array access which the index access expression can cause an exception in
case of the use of an invalid array index value.

Core AI | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

PASS

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Core AI | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Core AI | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Core AI | Security Analysis

SMART CONTRACT ANALYSIS

Started Saturday Feb 04 2023 09:31:01 GMT+0000 (Coordinated Universal Time)

Finished Sunday Feb 05 2023 01:56:59 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File CoreAI.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

Core AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 668

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoreAI.sol

Locations

667 unchecked {

668 _approve(sender, _msgSender(), currentAllowance - amount);

669 }

670 }

671

672

Core AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 684

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoreAI.sol

Locations

683 spender,

684 _allowances[_msgSender()][spender] + addedValue

685);

686 return true;

687 }

688

Core AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 699

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoreAI.sol

Locations

698 unchecked {

699 _approve(_msgSender(), spender, currentAllowance - subtractedValue);

700 }

701

702 return true;

703

Core AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 721

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoreAI.sol

Locations

720 unchecked {

721 _balances[sender] = senderBalance - amount;

722 }

723 _balances[recipient] += amount;

724

725

Core AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 723

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoreAI.sol

Locations

722 }

723 _balances[recipient] += amount;

724

725 emit Transfer(sender, recipient, amount);

726

727

Core AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 735

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoreAI.sol

Locations

734

735 _totalSupply += amount;

736 _balances[account] += amount;

737 emit Transfer(address(0), account, amount);

738

739

Core AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 736

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoreAI.sol

Locations

735 _totalSupply += amount;

736 _balances[account] += amount;

737 emit Transfer(address(0), account, amount);

738

739 _afterTokenTransfer(address(0), account, amount);

740

Core AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 750

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoreAI.sol

Locations

749 unchecked {

750 _balances[account] = accountBalance - amount;

751 }

752 _totalSupply -= amount;

753

754

Core AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 752

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoreAI.sol

Locations

751 }

752 _totalSupply -= amount;

753

754 emit Transfer(account, address(0), amount);

755

756

Core AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 839

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoreAI.sol

Locations

838

839 _mint(owner(), 1e8 * (10 ** decimals()));

840 swapTokensAtAmount = totalSupply() / 5_000;

841

842 tradingEnabled = false;

843

Core AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 839

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoreAI.sol

Locations

838

839 _mint(owner(), 1e8 * (10 ** decimals()));

840 swapTokensAtAmount = totalSupply() / 5_000;

841

842 tradingEnabled = false;

843

Core AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 840

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoreAI.sol

Locations

839 _mint(owner(), 1e8 * (10 ** decimals()));

840 swapTokensAtAmount = totalSupply() / 5_000;

841

842 tradingEnabled = false;

843 swapEnabled = false;

844

Core AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 942

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoreAI.sol

Locations

941 to == uniswapV2Pair &&

942 marketingFeeOnBuy + marketingFeeOnSell > 0 &&

943 swapEnabled

944) {

945 swapping = true;

946

Core AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 964

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoreAI.sol

Locations

963 if (_totalFees > 0) {

964 uint256 fees = (amount * _totalFees) / 100;

965 amount = amount - fees;

966 super._transfer(from, address(this), fees);

967 }

968

Core AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 964

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoreAI.sol

Locations

963 if (_totalFees > 0) {

964 uint256 fees = (amount * _totalFees) / 100;

965 amount = amount - fees;

966 super._transfer(from, address(this), fees);

967 }

968

Core AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 965

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoreAI.sol

Locations

964 uint256 fees = (amount * _totalFees) / 100;

965 amount = amount - fees;

966 super._transfer(from, address(this), fees);

967 }

968

969

Core AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 981

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoreAI.sol

Locations

980 require(

981 newAmount > totalSupply() / 1_000_000,

982 "SwapTokensAtAmount must be greater than 0.0001% of total supply"

983);

984 swapTokensAtAmount = newAmount;

985

Core AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1004

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoreAI.sol

Locations

1003

1004 uint256 newBalance = address(this).balance - initialBalance;

1005

1006 payable(marketingWallet).sendValue(newBalance);

1007

1008

Core AI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 993

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoreAI.sol

Locations

992 address[] memory path = new address[](2);

993 path[0] = address(this);

994 path[1] = uniswapV2Router.WETH();

995

996 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

997

Core AI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 994

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoreAI.sol

Locations

993 path[0] = address(this);

994 path[1] = uniswapV2Router.WETH();

995

996 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

997 tokenAmount,

998

Core AI | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Core AI | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

