
Tuzi2023

Smart Contract
Audit Report

08 Jan 2023

Tuzi2023 | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Tuzi2023 | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Tuzi2023 T2023 Binance Smart Chain

| Addresses

Contract address 0xD03cc658eF2192d7cE174b91b752E9A72821dd65

Contract deployer address 0x3519400E403a0260dA97B0a29DB5c6C22718e994

| Project Website

https://www.tuzi2023.com/

| Codebase

https://bscscan.com/address/0xD03cc658eF2192d7cE174b91b752E9A72821dd65#code

https://www.tuzi2023.com/
https://bscscan.com/address/0xD03cc658eF2192d7cE174b91b752E9A72821dd65#code

Tuzi2023 | Security Analysis

SUMMARY

Tuzi is a meme token made in celebration of new year of china. Ring in the year of rabbit with doge coin
rewards from our Tuzi Token. Dev team always keep Community Connection. Confident to use the power of
community for pushing in organic way. Long-term development. Give up ownership after launch.

| Contract Summary

Documentation Quality

Tuzi2023 provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Tuzi2023 with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 60, 188, 220, 243, 244, 279, 315, 331, 335, 347, 354, 363, 891, 930, 976, 1011, 1098, 1098, 1175,
1175, 1244, 1273, 1273, 1426, 1426, 1426, 1456, 1459, 1459, 1462, 1462, 1463, 1463, 1463, 1469, 1469,
1472, 1502, 1503, 1503, 1504, 1510, 1511, 1511, 1512, 1520, 1520, 1526, 1526, 1532, 1532, 1596, 1596,
1608, 1608, 1678, 1687, 1765, 1775, 1779, 1784 and 60.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 8, 74, 121,
174, 398, 422, 481, 586, 875 and 1066.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 31, 61, 66, 973, 974, 1245, 1541, 1542 and 1771.
SWC-115 | tx.origin should not be used for authorization, use msg.sender instead on lines 1201 and
1494.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 1285 and
1456.

Tuzi2023 | Security Analysis

CONCLUSION

We have audited the Tuzi2023 project released on January 2023 to discover issues and identify potential
security vulnerabilities in Tuzi2023 Project. This process is used to find technical issues and security loopholes
which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the Tuzi2023 smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, weak sources of randomness, tx.origin as a part of authorization
control and out of bounds array access which the index access expression can cause an exception in case of
the use of an invalid array index value.

Tuzi2023 | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegate calls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

Tuzi2023 | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization.
ISSUE

FOUND

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Tuzi2023 | Security Analysis

SMART CONTRACT ANALYSIS

Started Saturday Jan 07 2023 12:01:21 GMT+0000 (Coordinated Universal Time)

Finished Sunday Jan 08 2023 19:15:18 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File Tuzi2023.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 60

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

59 uint index = map.indexOf[key];

60 uint lastIndex = map.keys.length - 1;

61 address lastKey = map.keys[lastIndex];

62

63 map.indexOf[lastKey] = index;

64

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 188

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

187 function add(uint256 a, uint256 b) internal pure returns (uint256) {

188 uint256 c = a + b;

189 require(c >= a, "SafeMath: addition overflow");

190

191 return c;

192

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 220

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

219 require(b <= a, errorMessage);

220 uint256 c = a - b;

221

222 return c;

223 }

224

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 243

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

242

243 uint256 c = a * b;

244 require(c / a == b, "SafeMath: multiplication overflow");

245

246 return c;

247

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 244

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

243 uint256 c = a * b;

244 require(c / a == b, "SafeMath: multiplication overflow");

245

246 return c;

247 }

248

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 279

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

278 require(b > 0, errorMessage);

279 uint256 c = a / b;

280 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

281

282 return c;

283

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 315

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

314 require(b != 0, errorMessage);

315 return a % b;

316 }

317 }

318

319

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 331

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

330 function mul(int256 a, int256 b) internal pure returns (int256) {

331 int256 c = a * b;

332

333 // Detect overflow when multiplying MIN_INT256 with -1

334 require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

335

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 335

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

334 require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

335 require((b == 0) || (c / b == a));

336 return c;

337 }

338

339

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 347

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

346 // Solidity already throws when dividing by 0.

347 return a / b;

348 }

349

350 /**

351

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 354

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

353 function sub(int256 a, int256 b) internal pure returns (int256) {

354 int256 c = a - b;

355 require((b >= 0 && c <= a) || (b < 0 && c > a));

356 return c;

357 }

358

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 363

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

362 function add(int256 a, int256 b) internal pure returns (int256) {

363 int256 c = a + b;

364 require((b >= 0 && c >= a) || (b < 0 && c < a));

365 return c;

366 }

367

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 891

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

890 // see https://github.com/ethereum/EIPs/issues/1726#issuecomment-472352728

891 uint256 constant internal magnitude = 2**128;

892

893 IRouter public router;

894 address public rewardToken;

895

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 930

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

929 magnifiedDividendPerShare = magnifiedDividendPerShare.add(

930 (msg.value).mul(magnitude) / totalSupply()

931);

932 emit DividendsDistributed(msg.sender, msg.value);

933

934

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 976

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

975

976 try router.swapExactETHForTokens{value: amt}(0, path, user, block.timestamp + 2){

977 return true;

978 } catch {

979 return false;

980

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1011

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1010 function accumulativeDividendOf(address _owner) public view override

returns(uint256) {

1011 return magnifiedDividendPerShare.mul(balanceOf(_owner)).toInt256Safe()

1012 .add(magnifiedDividendCorrections[_owner]).toUint256Safe() / magnitude;

1013 }

1014

1015

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1098

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1097

1098 uint256 public swapTokensAtAmount = 1e9 * 10**9;

1099

1100 string private currentRewardToken;

1101

1102

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1098

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1097

1098 uint256 public swapTokensAtAmount = 1e9 * 10**9;

1099

1100 string private currentRewardToken;

1101

1102

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1175

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1174 */

1175 _tokengeneration(owner(), 1e12 * (10**9));

1176 }

1177

1178 receive() external payable {}

1179

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1175

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1174 */

1175 _tokengeneration(owner(), 1e12 * (10**9));

1176 }

1177

1178 receive() external payable {}

1179

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1244

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1243 {

1244 for (uint256 i = 0; i < accounts.length; i++) {

1245 _isExcludedFromFees[accounts[i]] = excluded;

1246 }

1247 emit ExcludeMultipleAccountsFromFees(accounts, excluded);

1248

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1273

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1272 require(amount < 1e10,"Swap Threshold should be less than 1% of total supply");

1273 swapTokensAtAmount = amount * 10**9;

1274 }

1275

1276 /// @notice Enable or disable internal swaps

1277

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1273

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1272 require(amount < 1e10,"Swap Threshold should be less than 1% of total supply");

1273 swapTokensAtAmount = amount * 10**9;

1274 }

1275

1276 /// @notice Enable or disable internal swaps

1277

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1426

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1425 bool canSwap = contractTokenBalance >= swapTokensAtAmount;

1426 uint256 swapTax = sellTaxes.rewards +

1427 sellTaxes.marketing +

1428 sellTaxes.dev +

1429 sellTaxes.liquidity ;

1430

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1426

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1425 bool canSwap = contractTokenBalance >= swapTokensAtAmount;

1426 uint256 swapTax = sellTaxes.rewards +

1427 sellTaxes.marketing +

1428 sellTaxes.dev +

1429 sellTaxes.liquidity ;

1430

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1426

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1425 bool canSwap = contractTokenBalance >= swapTokensAtAmount;

1426 uint256 swapTax = sellTaxes.rewards +

1427 sellTaxes.marketing +

1428 sellTaxes.dev +

1429 sellTaxes.liquidity ;

1430

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1456

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1455 if (takeFee) {

1456 bool beforeTradingFee = block.number <= startTradingBlock + antiBotBlocks;

1457 uint256 swapAmt;

1458 if (automatedMarketMakerPairs[to] && !beforeTradingFee) {

1459 swapAmt = (amount * swapTax) / 100;

1460

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1459

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1458 if (automatedMarketMakerPairs[to] && !beforeTradingFee) {

1459 swapAmt = (amount * swapTax) / 100;

1460 } else if (automatedMarketMakerPairs[from] && !beforeTradingFee) {

1461 swapAmt =

1462 (amount *

1463

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1459

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1458 if (automatedMarketMakerPairs[to] && !beforeTradingFee) {

1459 swapAmt = (amount * swapTax) / 100;

1460 } else if (automatedMarketMakerPairs[from] && !beforeTradingFee) {

1461 swapAmt =

1462 (amount *

1463

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1462

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1461 swapAmt =

1462 (amount *

1463 (buyTaxes.rewards +

1464 buyTaxes.marketing +

1465 buyTaxes.dev +

1466

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1462

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1461 swapAmt =

1462 (amount *

1463 (buyTaxes.rewards +

1464 buyTaxes.marketing +

1465 buyTaxes.dev +

1466

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1463

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1462 (amount *

1463 (buyTaxes.rewards +

1464 buyTaxes.marketing +

1465 buyTaxes.dev +

1466 buyTaxes.liquidity)) /

1467

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1463

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1462 (amount *

1463 (buyTaxes.rewards +

1464 buyTaxes.marketing +

1465 buyTaxes.dev +

1466 buyTaxes.liquidity)) /

1467

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1463

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1462 (amount *

1463 (buyTaxes.rewards +

1464 buyTaxes.marketing +

1465 buyTaxes.dev +

1466 buyTaxes.liquidity)) /

1467

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1469

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1468 } else if (beforeTradingFee) {

1469 swapAmt = (amount * launchtax) / 100;

1470 }

1471

1472 amount = amount - (swapAmt);

1473

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1469

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1468 } else if (beforeTradingFee) {

1469 swapAmt = (amount * launchtax) / 100;

1470 }

1471

1472 amount = amount - (swapAmt);

1473

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1472

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1471

1472 amount = amount - (swapAmt);

1473 super._transfer(from, address(this), swapAmt);

1474 }

1475 super._transfer(from, to, amount);

1476

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1502

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1501 // Split the contract balance into halves

1502 uint256 denominator = swapTax * 2;

1503 uint256 tokensToAddLiquidityWith = (tokens * sellTaxes.liquidity) / denominator;

1504 uint256 toSwap = tokens - tokensToAddLiquidityWith;

1505

1506

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1503

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1502 uint256 denominator = swapTax * 2;

1503 uint256 tokensToAddLiquidityWith = (tokens * sellTaxes.liquidity) / denominator;

1504 uint256 toSwap = tokens - tokensToAddLiquidityWith;

1505

1506 uint256 initialBalance = address(this).balance;

1507

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1503

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1502 uint256 denominator = swapTax * 2;

1503 uint256 tokensToAddLiquidityWith = (tokens * sellTaxes.liquidity) / denominator;

1504 uint256 toSwap = tokens - tokensToAddLiquidityWith;

1505

1506 uint256 initialBalance = address(this).balance;

1507

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1504

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1503 uint256 tokensToAddLiquidityWith = (tokens * sellTaxes.liquidity) / denominator;

1504 uint256 toSwap = tokens - tokensToAddLiquidityWith;

1505

1506 uint256 initialBalance = address(this).balance;

1507

1508

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1510

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1509

1510 uint256 deltaBalance = address(this).balance - initialBalance;

1511 uint256 unitBalance = deltaBalance / (denominator - sellTaxes.liquidity);

1512 uint256 bnbToAddLiquidityWith = unitBalance * sellTaxes.liquidity;

1513

1514

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1511

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1510 uint256 deltaBalance = address(this).balance - initialBalance;

1511 uint256 unitBalance = deltaBalance / (denominator - sellTaxes.liquidity);

1512 uint256 bnbToAddLiquidityWith = unitBalance * sellTaxes.liquidity;

1513

1514 if (bnbToAddLiquidityWith > 0) {

1515

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1511

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1510 uint256 deltaBalance = address(this).balance - initialBalance;

1511 uint256 unitBalance = deltaBalance / (denominator - sellTaxes.liquidity);

1512 uint256 bnbToAddLiquidityWith = unitBalance * sellTaxes.liquidity;

1513

1514 if (bnbToAddLiquidityWith > 0) {

1515

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1512

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1511 uint256 unitBalance = deltaBalance / (denominator - sellTaxes.liquidity);

1512 uint256 bnbToAddLiquidityWith = unitBalance * sellTaxes.liquidity;

1513

1514 if (bnbToAddLiquidityWith > 0) {

1515 // Add liquidity to pancake

1516

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1520

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1519 // Send BNB to marketingWallet

1520 uint256 marketingWalletAmt = unitBalance * 2 * sellTaxes.marketing;

1521 if (marketingWalletAmt > 0) {

1522 payable(marketingWallet).sendValue(marketingWalletAmt);

1523 }

1524

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1520

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1519 // Send BNB to marketingWallet

1520 uint256 marketingWalletAmt = unitBalance * 2 * sellTaxes.marketing;

1521 if (marketingWalletAmt > 0) {

1522 payable(marketingWallet).sendValue(marketingWalletAmt);

1523 }

1524

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1526

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1525 // Send BNB to devWallet

1526 uint256 devWalletAmt = unitBalance * 2 * sellTaxes.dev;

1527 if (devWalletAmt > 0) {

1528 payable(devWallet).sendValue(devWalletAmt);

1529 }

1530

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1526

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1525 // Send BNB to devWallet

1526 uint256 devWalletAmt = unitBalance * 2 * sellTaxes.dev;

1527 if (devWalletAmt > 0) {

1528 payable(devWallet).sendValue(devWalletAmt);

1529 }

1530

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1532

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1531 // Send BNB to rewardsContract

1532 uint256 dividends = unitBalance * 2 * sellTaxes.rewards;

1533 if (dividends > 0) {

1534 (bool success,) = address(dividendTracker).call{ value: dividends }("");

1535 if (success) emit SendDividends(tokens, dividends);

1536

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1532

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1531 // Send BNB to rewardsContract

1532 uint256 dividends = unitBalance * 2 * sellTaxes.rewards;

1533 if (dividends > 0) {

1534 (bool success,) = address(dividendTracker).call{ value: dividends }("");

1535 if (success) emit SendDividends(tokens, dividends);

1536

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1596

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1595 claimWait = 3600;

1596 minimumTokenBalanceForDividends = 100000 * (10**decimals());

1597 }

1598

1599 function _transfer(

1600

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1596

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1595 claimWait = 3600;

1596 minimumTokenBalanceForDividends = 100000 * (10**decimals());

1597 }

1598

1599 function _transfer(

1600

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1608

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1607 function setMinBalanceForDividends(uint256 amount) external onlyOwner {

1608 minimumTokenBalanceForDividends = amount * 10**decimals();

1609 }

1610

1611 function excludeFromDividends(address account, bool value) external onlyOwner {

1612

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1608

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1607 function setMinBalanceForDividends(uint256 amount) external onlyOwner {

1608 minimumTokenBalanceForDividends = amount * 10**decimals();

1609 }

1610

1611 function excludeFromDividends(address account, bool value) external onlyOwner {

1612

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1678

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1677

1678 iterationsUntilProcessed = index + (int256(processesUntilEndOfArray));

1679 }

1680 }

1681

1682

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1687

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1686

1687 nextClaimTime = lastClaimTime > 0 ? lastClaimTime + (claimWait) : 0;

1688

1689 secondsUntilAutoClaimAvailable = nextClaimTime > block.timestamp

1690 ? nextClaimTime.sub(block.timestamp)

1691

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1765

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1764 while (gasUsed < gas && iterations < numberOfTokenHolders) {

1765 _lastProcessedIndex++;

1766

1767 if (_lastProcessedIndex >= tokenHoldersMap.keys.length) {

1768 _lastProcessedIndex = 0;

1769

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1775

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1774 if (processAccount(payable(account), true)) {

1775 claims++;

1776 }

1777 }

1778

1779

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1779

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1778

1779 iterations++;

1780

1781 uint256 newGasLeft = gasleft();

1782

1783

Tuzi2023 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1784

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

1783 if (gasLeft > newGasLeft) {

1784 gasUsed = gasUsed + (gasLeft.sub(newGasLeft));

1785 }

1786

1787 gasLeft = newGasLeft;

1788

Tuzi2023 | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 60

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Tuzi2023.sol

Locations

59 uint index = map.indexOf[key];

60 uint lastIndex = map.keys.length - 1;

61 address lastKey = map.keys[lastIndex];

62

63 map.indexOf[lastKey] = index;

64

Tuzi2023 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 8

low SEVERITY
The current pragma Solidity directive is ""^0.8.6"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Tuzi2023.sol

Locations

7

8 pragma solidity ^0.8.6;

9

10 library IterableMapping {

11 // Iterable mapping from address to uint;

12

Tuzi2023 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 74

low SEVERITY
The current pragma Solidity directive is ""^0.8.6"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Tuzi2023.sol

Locations

73

74 pragma solidity ^0.8.6;

75

76 interface IPair {

77 function sync() external;

78

Tuzi2023 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 121

low SEVERITY
The current pragma Solidity directive is ""^0.8.6"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Tuzi2023.sol

Locations

120

121 pragma solidity ^0.8.6;

122

123

124 /// @title Dividend-Paying Token Interface

125

Tuzi2023 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 174

low SEVERITY
The current pragma Solidity directive is ""^0.8.6"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Tuzi2023.sol

Locations

173

174 pragma solidity ^0.8.6;

175

176 library SafeMath {

177 /**

178

Tuzi2023 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 398

low SEVERITY
The current pragma Solidity directive is ""^0.8.6"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Tuzi2023.sol

Locations

397

398 pragma solidity ^0.8.6;

399

400 /*

401 * @dev Provides information about the current execution context, including the

402

Tuzi2023 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 422

low SEVERITY
The current pragma Solidity directive is ""^0.8.6"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Tuzi2023.sol

Locations

421

422 pragma solidity ^0.8.6;

423

424

425

426

Tuzi2023 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 481

low SEVERITY
The current pragma Solidity directive is ""^0.8.6"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Tuzi2023.sol

Locations

480

481 pragma solidity ^0.8.6;

482

483 /**

484 * @dev Interface of the ERC20 standard as defined in the EIP.

485

Tuzi2023 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 586

low SEVERITY
The current pragma Solidity directive is ""^0.8.6"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Tuzi2023.sol

Locations

585

586 pragma solidity ^0.8.6;

587

588

589

590

Tuzi2023 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 875

low SEVERITY
The current pragma Solidity directive is ""^0.8.6"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Tuzi2023.sol

Locations

874

875 pragma solidity ^0.8.6;

876

877

878

879

Tuzi2023 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1066

low SEVERITY
The current pragma Solidity directive is ""^0.8.17"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Tuzi2023.sol

Locations

1065

1066 pragma solidity ^0.8.17;

1067

1068

1069

1070

Tuzi2023 | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 1201

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- Tuzi2023.sol

Locations

1200 gas,

1201 tx.origin

1202);

1203 }

1204

1205

Tuzi2023 | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 1494

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- Tuzi2023.sol

Locations

1493 gas,

1494 tx.origin

1495);

1496 } catch {}

1497 }

1498

Tuzi2023 | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 31

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Tuzi2023.sol

Locations

30 function getKeyAtIndex(Map storage map, uint index) public view returns (address) {

31 return map.keys[index];

32 }

33

34

35

Tuzi2023 | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 61

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Tuzi2023.sol

Locations

60 uint lastIndex = map.keys.length - 1;

61 address lastKey = map.keys[lastIndex];

62

63 map.indexOf[lastKey] = index;

64 delete map.indexOf[key];

65

Tuzi2023 | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 66

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Tuzi2023.sol

Locations

65

66 map.keys[index] = lastKey;

67 map.keys.pop();

68 }

69 }

70

Tuzi2023 | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 973

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Tuzi2023.sol

Locations

972 address[] memory path = new address[](2);

973 path[0] = router.WETH();

974 path[1] = rewardToken;

975

976 try router.swapExactETHForTokens{value: amt}(0, path, user, block.timestamp + 2){

977

Tuzi2023 | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 974

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Tuzi2023.sol

Locations

973 path[0] = router.WETH();

974 path[1] = rewardToken;

975

976 try router.swapExactETHForTokens{value: amt}(0, path, user, block.timestamp + 2){

977 return true;

978

Tuzi2023 | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1245

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Tuzi2023.sol

Locations

1244 for (uint256 i = 0; i < accounts.length; i++) {

1245 _isExcludedFromFees[accounts[i]] = excluded;

1246 }

1247 emit ExcludeMultipleAccountsFromFees(accounts, excluded);

1248 }

1249

Tuzi2023 | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1541

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Tuzi2023.sol

Locations

1540 address[] memory path = new address[](2);

1541 path[0] = address(this);

1542 path[1] = router.WETH();

1543

1544 _approve(address(this), address(router), tokenAmount);

1545

Tuzi2023 | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1542

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Tuzi2023.sol

Locations

1541 path[0] = address(this);

1542 path[1] = router.WETH();

1543

1544 _approve(address(this), address(router), tokenAmount);

1545

1546

Tuzi2023 | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1771

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Tuzi2023.sol

Locations

1770

1771 address account = tokenHoldersMap.keys[_lastProcessedIndex];

1772

1773 if (canAutoClaim(lastClaimTimes[account])) {

1774 if (processAccount(payable(account), true)) {

1775

Tuzi2023 | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1285

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- Tuzi2023.sol

Locations

1284 tradingEnabled = true;

1285 startTradingBlock = block.number;

1286 }

1287

1288 function setAntiBotBlocks(uint256 numberOfBlocks) external onlyOwner{

1289

Tuzi2023 | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1456

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- Tuzi2023.sol

Locations

1455 if (takeFee) {

1456 bool beforeTradingFee = block.number <= startTradingBlock + antiBotBlocks;

1457 uint256 swapAmt;

1458 if (automatedMarketMakerPairs[to] && !beforeTradingFee) {

1459 swapAmt = (amount * swapTax) / 100;

1460

Tuzi2023 | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Tuzi2023 | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

