
Lobby Token

Smart Contract
Audit Report

22 Nov 2022

Lobby Token | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Lobby Token | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Lobby Token LBY Ethereum

| Addresses

Contract address 0xac042d9284df95cc6bd35982f6a61e3e7a6f875b

Contract deployer address 0x98600d7F402950f830D510CCc9d3ead4f6109033

| Project Website

https://www.lobbytoken.io/

| Codebase

https://etherscan.io/address/0xac042d9284df95cc6bd35982f6a61e3e7a6f875b#code

https://www.lobbytoken.io/
https://etherscan.io/address/0xac042d9284df95cc6bd35982f6a61e3e7a6f875b#code

Lobby Token | Security Analysis

SUMMARY

$LBY is a governance token that powers and secures the Lobby DAO. Holders of $LBY can vote on proposals
for Lobby DAO as well as all future products within the Lobby DAO ecosystem.

| Contract Summary

Documentation Quality

Lobby Token provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Lobby Token with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 723 and 749.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 156, 188, 206, 206, 242, 282, 503, 753, 753, 753, 753, 753, 754, 773, 773, 773, 773, 774, 774, 774,
774, 871, 871, 883, 884, 884, 922, 924, 972, 972, 980, 980, 1052, 1083, 1085, 1188 and 924.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 51.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 882, 883, 922, 923, 924, 1052, 1053, 1058, 1059, 1198 and 1199.

Lobby Token | Security Analysis

CONCLUSION

We have audited the Lobby Token project released on November 2022 to discover issues and identify potential
security vulnerabilities in Lobby Token Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues in the Lobby Token smart contract code do not pose a considerable risk. The writing of the contract
is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a state variable visibility is not set, and out-of-bounds array access
which the index access expression can cause an exception in case of using an invalid array index value.

Lobby Token | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Lobby Token | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Lobby Token | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Lobby Token | Security Analysis

SMART CONTRACT ANALYSIS

Started Monday Nov 21 2022 00:28:45 GMT+0000 (Coordinated Universal Time)

Finished Tuesday Nov 22 2022 21:54:14 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File Lobby.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 156

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

155 *

156 * - Subtraction cannot overflow.

157 */

158 function sub(uint256 a, uint256 b, string memory errorMessage) internal pure

returns (uint256) {

159 require(b <= a, errorMessage);

160

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 188

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

187 }

188

189 /**

190 * @dev Returns the integer division of two unsigned integers. Reverts on

191 * division by zero. The result is rounded towards zero.

192

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 206

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

205 /**

206 * @dev Returns the integer division of two unsigned integers. Reverts with custom

message on

207 * division by zero. The result is rounded towards zero.

208 *

209 * Counterpart to Solidity's `/` operator. Note: this function uses a

210

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 206

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

205 /**

206 * @dev Returns the integer division of two unsigned integers. Reverts with custom

message on

207 * division by zero. The result is rounded towards zero.

208 *

209 * Counterpart to Solidity's `/` operator. Note: this function uses a

210

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 242

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

241 /**

242 * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer

modulo),

243 * Reverts with custom message when dividing by zero.

244 *

245 * Counterpart to Solidity's `%` operator. This function uses a `revert`

246

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 282

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

281 * It is unsafe to assume that an address for which this function returns

282 * false is an externally-owned account (EOA) and not a contract.

283 *

284 * Among others, `isContract` will return false for the following

285 * types of addresses:

286

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 503

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

502

503 function getPair(address tokenA, address tokenB) external view returns (address

pair);

504 function allPairs(uint) external view returns (address pair);

505 function allPairsLength() external view returns (uint);

506

507

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 753

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

752 uint256 public _maxTxAmount = 1000000 * 10**3 * 10**9;

753 uint256 public numTokensSellToAddToLiquidity = 1000000 * 10**3 * 10**9;

754

755 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

756 event SwapAndLiquifyEnabledUpdated(bool enabled);

757

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 753

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

752 uint256 public _maxTxAmount = 1000000 * 10**3 * 10**9;

753 uint256 public numTokensSellToAddToLiquidity = 1000000 * 10**3 * 10**9;

754

755 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

756 event SwapAndLiquifyEnabledUpdated(bool enabled);

757

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 753

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

752 uint256 public _maxTxAmount = 1000000 * 10**3 * 10**9;

753 uint256 public numTokensSellToAddToLiquidity = 1000000 * 10**3 * 10**9;

754

755 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

756 event SwapAndLiquifyEnabledUpdated(bool enabled);

757

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 753

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

752 uint256 public _maxTxAmount = 1000000 * 10**3 * 10**9;

753 uint256 public numTokensSellToAddToLiquidity = 1000000 * 10**3 * 10**9;

754

755 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

756 event SwapAndLiquifyEnabledUpdated(bool enabled);

757

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 753

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

752 uint256 public _maxTxAmount = 1000000 * 10**3 * 10**9;

753 uint256 public numTokensSellToAddToLiquidity = 1000000 * 10**3 * 10**9;

754

755 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

756 event SwapAndLiquifyEnabledUpdated(bool enabled);

757

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 754

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

753 uint256 public numTokensSellToAddToLiquidity = 1000000 * 10**3 * 10**9;

754

755 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

756 event SwapAndLiquifyEnabledUpdated(bool enabled);

757 event SwapAndLiquify(

758

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 773

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

772 //IUniswapV2Router02 _uniswapV2Router =

IUniswapV2Router02(0x10ED43C718714eb63d5aA57B78B54704E256024E); //Mainnet BSC

773 //IUniswapV2Router02 _uniswapV2Router =

IUniswapV2Router02(0x9Ac64Cc6e4415144C455BD8E4837Fea55603e5c3); //Testnet BSC

774 IUniswapV2Router02 _uniswapV2Router =

IUniswapV2Router02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D); //Mainnet & Testnet ETH

775 // Create a uniswap pair for this new token

776 uniswapV2Pair = IUniswapV2Factory(_uniswapV2Router.factory())

777

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 773

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

772 //IUniswapV2Router02 _uniswapV2Router =

IUniswapV2Router02(0x10ED43C718714eb63d5aA57B78B54704E256024E); //Mainnet BSC

773 //IUniswapV2Router02 _uniswapV2Router =

IUniswapV2Router02(0x9Ac64Cc6e4415144C455BD8E4837Fea55603e5c3); //Testnet BSC

774 IUniswapV2Router02 _uniswapV2Router =

IUniswapV2Router02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D); //Mainnet & Testnet ETH

775 // Create a uniswap pair for this new token

776 uniswapV2Pair = IUniswapV2Factory(_uniswapV2Router.factory())

777

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 773

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

772 //IUniswapV2Router02 _uniswapV2Router =

IUniswapV2Router02(0x10ED43C718714eb63d5aA57B78B54704E256024E); //Mainnet BSC

773 //IUniswapV2Router02 _uniswapV2Router =

IUniswapV2Router02(0x9Ac64Cc6e4415144C455BD8E4837Fea55603e5c3); //Testnet BSC

774 IUniswapV2Router02 _uniswapV2Router =

IUniswapV2Router02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D); //Mainnet & Testnet ETH

775 // Create a uniswap pair for this new token

776 uniswapV2Pair = IUniswapV2Factory(_uniswapV2Router.factory())

777

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 773

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

772 //IUniswapV2Router02 _uniswapV2Router =

IUniswapV2Router02(0x10ED43C718714eb63d5aA57B78B54704E256024E); //Mainnet BSC

773 //IUniswapV2Router02 _uniswapV2Router =

IUniswapV2Router02(0x9Ac64Cc6e4415144C455BD8E4837Fea55603e5c3); //Testnet BSC

774 IUniswapV2Router02 _uniswapV2Router =

IUniswapV2Router02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D); //Mainnet & Testnet ETH

775 // Create a uniswap pair for this new token

776 uniswapV2Pair = IUniswapV2Factory(_uniswapV2Router.factory())

777

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 774

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

773 //IUniswapV2Router02 _uniswapV2Router =

IUniswapV2Router02(0x9Ac64Cc6e4415144C455BD8E4837Fea55603e5c3); //Testnet BSC

774 IUniswapV2Router02 _uniswapV2Router =

IUniswapV2Router02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D); //Mainnet & Testnet ETH

775 // Create a uniswap pair for this new token

776 uniswapV2Pair = IUniswapV2Factory(_uniswapV2Router.factory())

777 .createPair(address(this), _uniswapV2Router.WETH());

778

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 774

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

773 //IUniswapV2Router02 _uniswapV2Router =

IUniswapV2Router02(0x9Ac64Cc6e4415144C455BD8E4837Fea55603e5c3); //Testnet BSC

774 IUniswapV2Router02 _uniswapV2Router =

IUniswapV2Router02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D); //Mainnet & Testnet ETH

775 // Create a uniswap pair for this new token

776 uniswapV2Pair = IUniswapV2Factory(_uniswapV2Router.factory())

777 .createPair(address(this), _uniswapV2Router.WETH());

778

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 774

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

773 //IUniswapV2Router02 _uniswapV2Router =

IUniswapV2Router02(0x9Ac64Cc6e4415144C455BD8E4837Fea55603e5c3); //Testnet BSC

774 IUniswapV2Router02 _uniswapV2Router =

IUniswapV2Router02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D); //Mainnet & Testnet ETH

775 // Create a uniswap pair for this new token

776 uniswapV2Pair = IUniswapV2Factory(_uniswapV2Router.factory())

777 .createPair(address(this), _uniswapV2Router.WETH());

778

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 774

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

773 //IUniswapV2Router02 _uniswapV2Router =

IUniswapV2Router02(0x9Ac64Cc6e4415144C455BD8E4837Fea55603e5c3); //Testnet BSC

774 IUniswapV2Router02 _uniswapV2Router =

IUniswapV2Router02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D); //Mainnet & Testnet ETH

775 // Create a uniswap pair for this new token

776 uniswapV2Pair = IUniswapV2Factory(_uniswapV2Router.factory())

777 .createPair(address(this), _uniswapV2Router.WETH());

778

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 871

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

870 address sender = _msgSender();

871 require(!_isExcluded[sender], "Excluded addresses cannot call this function");

872 (uint256 rAmount,,,,,) = _getValues(tAmount);

873 _rOwned[sender] = _rOwned[sender].sub(rAmount);

874 _rTotal = _rTotal.sub(rAmount);

875

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 871

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

870 address sender = _msgSender();

871 require(!_isExcluded[sender], "Excluded addresses cannot call this function");

872 (uint256 rAmount,,,,,) = _getValues(tAmount);

873 _rOwned[sender] = _rOwned[sender].sub(rAmount);

874 _rTotal = _rTotal.sub(rAmount);

875

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 883

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

882 return rAmount;

883 } else {

884 (,uint256 rTransferAmount,,,,) = _getValues(tAmount);

885 return rTransferAmount;

886 }

887

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 884

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

883 } else {

884 (,uint256 rTransferAmount,,,,) = _getValues(tAmount);

885 return rTransferAmount;

886 }

887 }

888

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 884

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

883 } else {

884 (,uint256 rTransferAmount,,,,) = _getValues(tAmount);

885 return rTransferAmount;

886 }

887 }

888

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 922

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

921 _tOwned[recipient] = _tOwned[recipient].add(tTransferAmount);

922 _rOwned[recipient] = _rOwned[recipient].add(rTransferAmount);

923 _takeLiquidity(tLiquidity);

924 _reflectFee(rFee, tFee);

925 emit Transfer(sender, recipient, tTransferAmount);

926

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 924

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

923 _takeLiquidity(tLiquidity);

924 _reflectFee(rFee, tFee);

925 emit Transfer(sender, recipient, tTransferAmount);

926 }

927

928

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 972

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

971

972 function clearStuckBalance (address payable walletaddress) external onlyOwner() {

973 walletaddress.transfer(address(this).balance);

974 }

975

976

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 972

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

971

972 function clearStuckBalance (address payable walletaddress) external onlyOwner() {

973 walletaddress.transfer(address(this).balance);

974 }

975

976

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 980

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

979

980 function removeBotWallet(address botwallet) external onlyOwner() {

981 botWallets[botwallet] = false;

982 }

983

984

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 980

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

979

980 function removeBotWallet(address botwallet) external onlyOwner() {

981 botWallets[botwallet] = false;

982 }

983

984

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1052

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

1051

1052 function calculateTaxFee(uint256 _amount) private view returns (uint256) {

1053 return _amount.mul(_taxFee).div(

1054 10**2

1055);

1056

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1083

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

1082

1083 function _approve(address owner, address spender, uint256 amount) private {

1084 require(owner != address(0), "ERC20: approve from the zero address");

1085 require(spender != address(0), "ERC20: approve to the zero address");

1086

1087

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1085

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

1084 require(owner != address(0), "ERC20: approve from the zero address");

1085 require(spender != address(0), "ERC20: approve to the zero address");

1086

1087 _allowances[owner][spender] = amount;

1088 emit Approval(owner, spender, amount);

1089

Lobby Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 1188

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

1187 block.timestamp

1188);

1189 }

1190

1191 function addLiquidity(uint256 tokenAmount, uint256 ethAmount) private {

1192

Lobby Token | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 924

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Lobby.sol

Locations

923 _takeLiquidity(tLiquidity);

924 _reflectFee(rFee, tFee);

925 emit Transfer(sender, recipient, tTransferAmount);

926 }

927

928

Lobby Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 51

low SEVERITY
The current pragma Solidity directive is ""^0.8.9"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Lobby.sol

Locations

50 * @dev Returns the remaining number of tokens that `spender` will be

51 * allowed to spend on behalf of `owner` through {transferFrom}. This is

52 * zero by default.

53 *

54 * This value changes when {approve} or {transferFrom} are called.

55

Lobby Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 723

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "botscantrade" is
internal. Other possible visibility settings are public and private.

Source File
- Lobby.sol

Locations

722 mapping (address => bool) private botWallets;

723 bool botscantrade = false;

724

725 bool public canTrade = false;

726 uint256 public launchTime;

727

Lobby Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 749

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- Lobby.sol

Locations

748

749 bool inSwapAndLiquify;

750 bool public swapAndLiquifyEnabled = true;

751

752 uint256 public _maxTxAmount = 1000000 * 10**3 * 10**9;

753

Lobby Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 882

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Lobby.sol

Locations

881 (uint256 rAmount,,,,,) = _getValues(tAmount);

882 return rAmount;

883 } else {

884 (,uint256 rTransferAmount,,,,) = _getValues(tAmount);

885 return rTransferAmount;

886

Lobby Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 883

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Lobby.sol

Locations

882 return rAmount;

883 } else {

884 (,uint256 rTransferAmount,,,,) = _getValues(tAmount);

885 return rTransferAmount;

886 }

887

Lobby Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 922

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Lobby.sol

Locations

921 _tOwned[recipient] = _tOwned[recipient].add(tTransferAmount);

922 _rOwned[recipient] = _rOwned[recipient].add(rTransferAmount);

923 _takeLiquidity(tLiquidity);

924 _reflectFee(rFee, tFee);

925 emit Transfer(sender, recipient, tTransferAmount);

926

Lobby Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 923

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Lobby.sol

Locations

922 _rOwned[recipient] = _rOwned[recipient].add(rTransferAmount);

923 _takeLiquidity(tLiquidity);

924 _reflectFee(rFee, tFee);

925 emit Transfer(sender, recipient, tTransferAmount);

926 }

927

Lobby Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 924

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Lobby.sol

Locations

923 _takeLiquidity(tLiquidity);

924 _reflectFee(rFee, tFee);

925 emit Transfer(sender, recipient, tTransferAmount);

926 }

927

928

Lobby Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1052

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Lobby.sol

Locations

1051

1052 function calculateTaxFee(uint256 _amount) private view returns (uint256) {

1053 return _amount.mul(_taxFee).div(

1054 10**2

1055);

1056

Lobby Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1053

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Lobby.sol

Locations

1052 function calculateTaxFee(uint256 _amount) private view returns (uint256) {

1053 return _amount.mul(_taxFee).div(

1054 10**2

1055);

1056 }

1057

Lobby Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1058

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Lobby.sol

Locations

1057

1058 function calculateLiquidityFee(uint256 _amount) private view returns (uint256) {

1059 return _amount.mul(_liquidityFee).div(

1060 10**2

1061);

1062

Lobby Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1059

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Lobby.sol

Locations

1058 function calculateLiquidityFee(uint256 _amount) private view returns (uint256) {

1059 return _amount.mul(_liquidityFee).div(

1060 10**2

1061);

1062 }

1063

Lobby Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1198

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Lobby.sol

Locations

1197 address(this),

1198 tokenAmount,

1199 0, // slippage is unavoidable

1200 0, // slippage is unavoidable

1201 owner(),

1202

Lobby Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1199

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Lobby.sol

Locations

1198 tokenAmount,

1199 0, // slippage is unavoidable

1200 0, // slippage is unavoidable

1201 owner(),

1202 block.timestamp

1203

Lobby Token | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Lobby Token | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

