ArenaPlay Smart Contract Audit Report # **TABLE OF CONTENTS** ### | Audited Details - Audited Project - Blockchain - Addresses - Project Website - Codebase ### Summary - Contract Summary - Audit Findings Summary - Vulnerabilities Summary ### Conclusion ### | Audit Results ### Smart Contract Analysis - Detected Vulnerabilities - Disclaimer - About Us # **AUDITED DETAILS** ### Audited Project | Project name | Token ticker | Blockchain | | |--------------|--------------|---------------------|--| | ArenaPlay | APC | Binance Smart Chain | | ### Addresses | Contract address | 0x2aa504586d6cab3c59fa629f74c586d78b93a025 | |---------------------------|--| | Contract deployer address | 0x4e6b2534e1c030E2A849C1BD6409de609bdcf81F | ### Project Website https://twitter.com/ArenaPlayAPC ### Codebase https://bscscan.com/address/0x2aa504586d6cab3c59fa629f74c586d78b93a025#code ### **SUMMARY** ArenaPlay is a decentralized Sports, esports & crypto betting platform. We plan to offer various services and features that will bring many benefits to both professional players/athletes & users alike. ### Contract Summary #### **Documentation Quality** ArenaPlay provides a very good documentation with standard of solidity base code. • The technical description is provided clearly and structured and also dont have any high risk issue. #### **Code Quality** The Overall quality of the basecode is standard. Standard solidity basecode and rules are already followed by ArenaPlay with the discovery of several low issues. #### **Test Coverage** Test coverage of the project is 100% (Through Codebase) ### Audit Findings Summary - SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 439. - SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on lines 33, 47, 57, 58, 70, 82, 276, 277, 284, 410, 410, 425, 425, 553, 589, 589, 590, 590, 591, 591, 592, 592, 599, 615, 620, 661, 667, 276 and 277. - SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 7. - SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new REVERT opcode in the EVM on lines 280, 282, 309, 554, 706 and 707. ### CONCLUSION We have audited the ArenaPlay project released on July 2022 to discover issues and identify potential security vulnerabilities in ArenaPlay Project. This process is used to find technical issues and security loopholes which might be found in the smart contract. The security audit report provides satisfactory results with low-risk issues. The ArenaPlay smart contract code issues do not pose a considerable risk. The writing of the contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic operation issues, a floating pragma is set, a state variable visibility is not set, and out-of-bounds array access which the index access expression can cause an exception in case of the use of an invalid array index value. It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code. It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is internal. Other possible visibility settings are public and private. # **AUDIT RESULT** | Article | Category | Description | Result | | |--------------------------------------|--------------------|---|----------------|--| | Default Visibility | SWC-100
SWC-108 | Functions and state variables visibility should be set explicitly. Visibility levels should be specified consciously. | ISSUF | | | Integer Overflow
and Underflow | SWC-101 | If unchecked math is used, all math operations should be safe from overflows and underflows. | ISSUE
FOUND | | | Outdated Compiler
Version | SWC-102 | It is recommended to use a recent version of the Solidity compiler. | PASS | | | Floating Pragma | SWC-103 | Contracts should be deployed with the same compiler version and flags that they have been tested thoroughly. | ISSUE
FOUND | | | Unchecked Call
Return Value | SWC-104 | The return value of a message call should be checked. | PASS | | | Unprotected Ether
Withdrawal | SWC-105 | Due to missing or insufficient access controls, malicious parties can withdraw from the contract. | PASS | | | SELFDESTRUCT
Instruction | SWC-106 | The contract should not be self-destructible while it has funds belonging to users. | it PASS | | | Reentrancy | SWC-107 | Check effect interaction pattern should be followed if the code performs recursive call. | PASS | | | Uninitialized
Storage Pointer | SWC-109 | Uninitialized local storage variables can point to unexpected storage locations in the contract. | PASS | | | Assert Violation | SWC-110
SWC-123 | Properly functioning code should never reach a ISSU failing assert statement. FOUL | | | | Deprecated Solidity Functions | SWC-111 | Deprecated built-in functions should never be used. | e used. PASS | | | Delegate call to
Untrusted Callee | SWC-112 | Delegatecalls should only be allowed to trusted addresses. | PASS | | | DoS (Denial of Service) | SWC-113
SWC-128 | Execution of the code should never be blocked by a specific contract state unless required. | | |--|--|---|------| | Race Conditions | SWC-114 | Race Conditions and Transactions Order Dependency should not be possible. | | | Authorization
through tx.origin | SWC-115 | tx.origin should not be used for authorization. | | | Block values as a proxy for time | SWC-116 | Block numbers should not be used for time calculations. | | | Signature Unique
ID | SWC-117
SWC-121
SWC-122 | Signed messages should always have a unique id. A transaction hash should not be used as a unique id. | PASS | | Incorrect
Constructor Name | SWC-118 Constructors are special functions that are called only once during the contract creation. | | PASS | | Shadowing State
Variable | SWC-119 | SWC-119 State variables should not be shadowed. | | | Weak Sources of
Randomness | SWC-120 | Random values should never be generated from Chain Attributes or be predictable. | | | Write to Arbitrary
Storage Location | SWC-124 | The contract is responsible for ensuring that only authorized user or contract accounts may write to sensitive storage locations. | PASS | | Incorrect
Inheritance Order | SWC-125 | | PASS | | Insufficient Gas
Griefing | SWC-126 | Insufficient gas griefing attacks can be performed on contracts which accept data and use it in a sub-call on another contract. | | | Arbitrary Jump
Function | SWC-127 | As Solidity doesnt support pointer arithmetics, it is impossible to change such variable to an arbitrary value. | PASS | | Typographical
Error | SWC-129 | A typographical error can occur for example when the intent of a defined operation is to sum a number to a variable. | | |-------------------------------|--------------------|--|------| | Override control
character | SWC-130 | Malicious actors can use the Right-To-Left-Override unicode character to force RTL text rendering and confuse users as to the real intent of a contract. | | | Unused variables | SWC-131
SWC-135 | Unused variables are allowed in Solidity and they do not pose a direct security issue. | PASS | | Unexpected Ether balance | SWC-132 | Contracts can behave erroneously when they strictly assume a specific Ether balance. | | | Hash Collisions
Variable | SWC-133 | Using abi.encodePacked() with multiple variable length arguments can, in certain situations, lead to a hash collision. | | | Hardcoded gas
amount | SWC-134 | The transfer() and send() functions forward a fixed amount of 2300 gas. | | | Unencrypted
Private Data | SWC-136 | It is a common misconception that private type variables cannot be read. | PASS | # **SMART CONTRACT ANALYSIS** | Started | Sunday Jul 03 2022 18:11:04 GMT+0000 (Coordinated Universal Time) | | | |------------------|---|--|--| | Finished | Monday Jul 04 2022 16:17:35 GMT+0000 (Coordinated Universal Time) | | | | Mode | Standard | | | | Main Source File | APCToken.sol | | | ## Detected Issues | ID | Title | Severity | Status | |---------|--------------------------------------|----------|--------------| | SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED | low | acknowledged | | SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED | low | acknowledged | | SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED | low | acknowledged | | SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED | low | acknowledged | | SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED | low | acknowledged | | SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED | low | acknowledged | | SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED | low | acknowledged | | SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED | low | acknowledged | | SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED | low | acknowledged | | SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED | low | acknowledged | | SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED | low | acknowledged | | SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED | low | acknowledged | | SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED | low | acknowledged | | SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED | low | acknowledged | | SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED | low | acknowledged | |---------|--------------------------------------|-----|--------------| | SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED | low | acknowledged | | SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED | low | acknowledged | | SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED | low | acknowledged | | SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED | low | acknowledged | | SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED | low | acknowledged | | SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED | low | acknowledged | | SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED | low | acknowledged | | SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED | low | acknowledged | | SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED | low | acknowledged | | SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED | low | acknowledged | | SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED | low | acknowledged | | SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED | low | acknowledged | |---------|---|-----|--------------| | SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED | low | acknowledged | | SWC-101 | COMPILER-REWRITABLE " <uint> - 1" DISCOVERED</uint> | low | acknowledged | | SWC-101 | COMPILER-REWRITABLE " <uint> - 1" DISCOVERED</uint> | low | acknowledged | | SWC-103 | A FLOATING PRAGMA IS SET. | low | acknowledged | | SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET. | low | acknowledged | | SWC-110 | OUT OF BOUNDS ARRAY ACCESS | low | acknowledged | | SWC-110 | OUT OF BOUNDS ARRAY ACCESS | low | acknowledged | | SWC-110 | OUT OF BOUNDS ARRAY ACCESS | low | acknowledged | | SWC-110 | OUT OF BOUNDS ARRAY ACCESS | low | acknowledged | | SWC-110 | OUT OF BOUNDS ARRAY ACCESS | low | acknowledged | | SWC-110 | OUT OF BOUNDS ARRAY ACCESS | low | acknowledged | LINE 33 #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } ``` LINE 47 #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` 46 require(b <= a, errorMessage); 47 uint256 c = a - b; 48 49 return c; 50 } 51</pre> ``` LINE 57 #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` 56 } 57 uint256 c = a * b; 58 require(c / a == b, "SafeMath: multiplication overflow"); 59 return c; 60 } 61 ``` LINE 58 #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` 57 uint256 c = a * b; 58 require(c / a == b, "SafeMath: multiplication overflow"); 59 return c; 60 } 61 62 ``` LINE 70 #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` 69 require(b > 0, errorMessage); 70 uint256 c = a / b; 71 return c; 72 } 73 74 ``` LINE 82 #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` 81 require(b != 0, errorMessage); 82 return a % b; 83 } 84 } 85 86 ``` **LINE 276** #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` 275 276 uint256 toDeleteIndex = valueIndex - 1; 277 uint256 lastIndex = set._values.length - 1; 278 279 280 ``` **LINE 277** #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` 276 uint256 toDeleteIndex = valueIndex - 1; 277 uint256 lastIndex = set._values.length - 1; 278 279 280 bytes32 lastvalue = set._values[lastIndex]; 281 ``` **LINE 284** #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` // Update the index for the moved value set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based set._values.pop(); set._values.pop(); 287 288 ``` **LINE 410** #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` 409 constructor (address token) public{ 410 IERC20(token).approve(msg.sender,10 ** 12 * 10**18); 411 } 412 } 413 414 ``` **LINE 410** #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` 409 constructor (address token) public{ 410 IERC20(token).approve(msg.sender,10 ** 12 * 10**18); 411 } 412 } 413 414 ``` **LINE 410** #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` 409 constructor (address token) public{ 410 IERC20(token).approve(msg.sender,10 ** 12 * 10**18); 411 } 412 } 413 414 ``` **LINE 425** #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` 424 uint8 private _decimals = 18; 425 uint256 private _tTotal = 1000000000 * 10 ** 18; 426 427 string private _name = "ArenaPlay"; 428 string private _symbol = "APC"; 429 ``` **LINE 425** #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` 424 uint8 private _decimals = 18; 425 uint256 private _tTotal = 1000000000 * 10 ** 18; 426 427 string private _name = "ArenaPlay"; 428 string private _symbol = "APC"; 429 ``` **LINE 553** #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` function excludeFromFee(address[] memory accounts) public onlyOwner { for(uint i = 0; i < accounts.length; i++){ _isExcludedFromFee[accounts[i]] = true; } 555 } 556 } </pre> ``` **LINE 589** #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` function _initParam(uint256 tAmount,Param memory param) private view { param.tLQ = tAmount * _lQFee / 1000; param.tBurn = tAmount * _burnFee / 1000; param.tFund = tAmount * _fundFee / 1000; uint tFee = tAmount * totalFee / 1000; ``` **LINE 589** #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` function _initParam(uint256 tAmount,Param memory param) private view { param.tLQ = tAmount * _lQFee / 1000; param.tBurn = tAmount * _burnFee / 1000; param.tFund = tAmount * _fundFee / 1000; uint tFee = tAmount * totalFee / 1000; ``` **LINE 590** #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` param.tLQ = tAmount * _lQFee / 1000; param.tBurn = tAmount * _burnFee / 1000; param.tFund = tAmount * _fundFee / 1000; uint tFee = tAmount * totalFee / 1000; param.tTransferAmount = tAmount.sub(tFee); 594 ``` **LINE 590** #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` param.tLQ = tAmount * _lQFee / 1000; param.tBurn = tAmount * _burnFee / 1000; param.tFund = tAmount * _fundFee / 1000; uint tFee = tAmount * totalFee / 1000; param.tTransferAmount = tAmount.sub(tFee); 594 ``` **LINE 591** #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` 590 param.tBurn = tAmount * _burnFee / 1000; 591 param.tFund = tAmount * _fundFee / 1000; 592 uint tFee = tAmount * totalFee / 1000; 593 param.tTransferAmount = tAmount.sub(tFee); 594 } 595 ``` **LINE 591** #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` 590 param.tBurn = tAmount * _burnFee / 1000; 591 param.tFund = tAmount * _fundFee / 1000; 592 uint tFee = tAmount * totalFee / 1000; 593 param.tTransferAmount = tAmount.sub(tFee); 594 } 595 ``` **LINE 592** #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` 591 param.tFund = tAmount * _fundFee / 1000; 592 uint tFee = tAmount * totalFee / 1000; 593 param.tTransferAmount = tAmount.sub(tFee); 594 } 595 596 ``` **LINE 592** #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` 591 param.tFund = tAmount * _fundFee / 1000; 592 uint tFee = tAmount * totalFee / 1000; 593 param.tTransferAmount = tAmount.sub(tFee); 594 } 595 596 ``` **LINE 599** #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` 598 _take(param.tLQ, from, address(this)); 599 lQAmount += param.tLQ; 600 } 601 if(param.tBurn > 0){ 602 _take(param.tBurn, from, address(0)); 603 ``` **LINE 615** #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` 614 if(token0 != address(this) && bal0 > r0){ 615 isAdd = bal0 - r0 > addPriceTokenAmount; 616 } 617 } 618 if(ammPairs[from]){ 619 ``` # SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED **LINE 620** #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` 619 if(token0 != address(this) && bal0 < r0){ 620 isDel = r0 - bal0 > 0; 621 } 622 } 623 } 624 ``` # SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED **LINE 661** #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` require(swapSwitch, "not start"); for require(block.timestamp > swapStartTime + swapTimeLimit, "not allow"); for require(block.timestamp > swapStartTime + swapTimeLimit, "not allow"); for require(swapSwitch, "not start"); ``` # SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED **LINE 667** #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` 666 require(swapSwitch, "not start"); 667 require(block.timestamp > swapStartTime + swapTimeLimit, "not allow"); 668 } 669 670 if(takeFee && balanceOf(address(0)) >= burnLimit){ 671 ``` # SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED **LINE 276** #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` 275 276 uint256 toDeleteIndex = valueIndex - 1; 277 uint256 lastIndex = set._values.length - 1; 278 279 280 ``` # SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED **LINE 277** #### **low SEVERITY** This plugin produces issues to support false positive discovery within mythril. #### Source File - APCToken.sol ``` uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; 278 279 280 bytes32 lastvalue = set._values[lastIndex]; 281 ``` ### SWC-103 | A FLOATING PRAGMA IS SET. LINE 7 #### **low SEVERITY** The current pragma Solidity directive is ""^0.6.12"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code. #### Source File - APCToken.sol ``` pragma solidity ^0.6.12; pragma experimental ABIEncoderV2; 10 11 ``` ### SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET. **LINE 439** #### **low SEVERITY** It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is internal. Other possible visibility settings are public and private. #### Source File - APCToken.sol ``` 438 439 bool inSwapAndLiquify; 440 441 address public uniswapV2Pair; 442 address public tokenReceiver; 443 ``` **LINE 280** #### **low SEVERITY** The index access expression can cause an exception in case of use of invalid array index value. ### Source File - APCToken.sol ``` 279 280 bytes32 lastvalue = set._values[lastIndex]; 281 282 set._values[toDeleteIndex] = lastvalue; 283 // Update the index for the moved value 284 ``` **LINE 282** #### **low SEVERITY** The index access expression can cause an exception in case of use of invalid array index value. #### Source File - APCToken.sol ``` 281 282 set._values[toDeleteIndex] = lastvalue; 283 // Update the index for the moved value 284 set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based 285 286 ``` **LINE 309** #### **low SEVERITY** The index access expression can cause an exception in case of use of invalid array index value. #### Source File - APCToken.sol ``` 308 require(set._values.length > index, "EnumerableSet: index out of bounds"); 309 return set._values[index]; 310 } 311 312 struct Bytes32Set { 313 ``` **LINE 554** #### **low SEVERITY** The index access expression can cause an exception in case of use of invalid array index value. #### Source File - APCToken.sol ``` 553 for(uint i = 0; i < accounts.length; i++){ 554 _isExcludedFromFee[accounts[i]] = true; 555 } 556 } 557 558</pre> ``` **LINE** 706 #### **low SEVERITY** The index access expression can cause an exception in case of use of invalid array index value. #### Source File - APCToken.sol ``` address[] memory path = new address[](2); path[0] = address(this); path[1] = usdt; approve(address(this), address(uniswapV2Router), tokenAmount); 710 ``` **LINE** 707 #### **low SEVERITY** The index access expression can cause an exception in case of use of invalid array index value. ### Source File - APCToken.sol ``` 706 path[0] = address(this); 707 path[1] = usdt; 708 709 _approve(address(this), address(uniswapV2Router), tokenAmount); 710 711 ``` ### **DISCLAIMER** This report is subject to the terms and conditions (including without limitation, description of services, confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions provided to you ("Customer" or the "Company") in connection with the Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in each instance. This report is not, nor should be considered, an "endorsement" or "disapproval" of any particular project or team. This report is not, nor should be considered, an indication of the economics or value of any "product" or "asset" created by any team or project that contracts Sysfixed to perform a security assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies proprietors, business, business model, or legal compliance. This is a limited report on our findings based on our analysis, in accordance with good industry practice as of the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms based on smart contracts, the details of which are set out in this report. In order to get a full view of our analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and producing this report, it is important to note that you should not rely on this report and cannot claim against us on the basis of what it says or doesn't say, or how we produced it, and it is important for you to conduct your own independent investigations before making any decisions. We go into more detail on this in the below disclaimer below – please make sure to read it in full. This report should not be used in any way to make decisions around investment or involvement with any particular project. This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report represents an extensive assessing process intending to help our customers increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and blockchain technology. This report is provided for information purposes only and on a non-reliance basis and does not constitute investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other representatives) (Sysfixed) owe no duty of care. ### **ABOUT US** Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts. Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and improvement of our tools and techniques used to fortify your code.