
IMPT

Smart Contract
Audit Report

04 Oct 2022

IMPT | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

IMPT | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

IMPT IMPT Ethereum

| Addresses

Contract address 0x04c17b9d3b29a78f7bd062a57cf44fc633e71f85

Contract deployer address 0xae500791254Bc813F336c3A1054e31ADe2b583F1

| Project Website

https://www.impt.io/

| Codebase

https://etherscan.io/address/0x04c17b9d3b29a78f7bd062a57cf44fc633e71f85#code

https://www.impt.io/
https://etherscan.io/address/0x04c17b9d3b29a78f7bd062a57cf44fc633e71f85#code

IMPT | Security Analysis

SUMMARY

Join an impactful carbon offset program by investing in the IMPT token.
Become a part of a large ecosystem that connects socially responsible brands with businesses and individuals
who want to reduce their carbon footprint. Based on the blockchain, our platform empowers you to buy, sell, or
retire carbon credits while avoiding double counting and fraud.

| Contract Summary

Documentation Quality

IMPT provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by IMPT with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 95, 103, 139, 140, 144, 145, 145, 146, 161, 171, 171, 174, 174, 174, 299, 904, 927, 960, 962, 983, 984,
1009, 1011, 1060, 1381, 1382, 1384 and 103.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 71, 117, 195,
415, 521, 584, 669, 699, 726, 1111, 1208 and 1249.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 145, 172, 173, 175, 175, 1383, 1384 and 1384.

IMPT | Security Analysis

CONCLUSION

We have audited the IMPT project released on October 2022 to discover issues and identify potential security
vulnerabilities in IMPT Project. This process is used to find technical issues and security loopholes which
might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the IMPT smart contract code do not pose a considerable risk. The writing of the contract
is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set and out of bounds array access which the index access expression
can cause an exception in case of the use of an invalid array index value.

IMPT | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

IMPT | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

IMPT | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

IMPT | Security Analysis

SMART CONTRACT ANALYSIS

Started Monday Oct 03 2022 23:16:45 GMT+0000 (Coordinated Universal Time)

Finished Tuesday Oct 04 2022 13:51:52 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File IMPT.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "--" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 95

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

94 unchecked {

95 counter._value += 1;

96 }

97 }

98

99

IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 103

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

102 unchecked {

103 counter._value = value - 1;

104 }

105 }

106

107

IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 139

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

138 while (temp != 0) {

139 digits++;

140 temp /= 10;

141 }

142 bytes memory buffer = new bytes(digits);

143

IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/=" DISCOVERED
LINE 140

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

139 digits++;

140 temp /= 10;

141 }

142 bytes memory buffer = new bytes(digits);

143 while (value != 0) {

144

IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 144

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

143 while (value != 0) {

144 digits -= 1;

145 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

146 value /= 10;

147 }

148

IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 145

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

144 digits -= 1;

145 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

146 value /= 10;

147 }

148 return string(buffer);

149

IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 145

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

144 digits -= 1;

145 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

146 value /= 10;

147 }

148 return string(buffer);

149

IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/=" DISCOVERED
LINE 146

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

145 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

146 value /= 10;

147 }

148 return string(buffer);

149 }

150

IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 161

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

160 while (temp != 0) {

161 length++;

162 temp >>= 8;

163 }

164 return toHexString(value, length);

165

IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 171

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

170 function toHexString(uint256 value, uint256 length) internal pure returns (string

memory) {

171 bytes memory buffer = new bytes(2 * length + 2);

172 buffer[0] = "0";

173 buffer[1] = "x";

174 for (uint256 i = 2 * length + 1; i > 1; --i) {

175

IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 171

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

170 function toHexString(uint256 value, uint256 length) internal pure returns (string

memory) {

171 bytes memory buffer = new bytes(2 * length + 2);

172 buffer[0] = "0";

173 buffer[1] = "x";

174 for (uint256 i = 2 * length + 1; i > 1; --i) {

175

IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 174

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

173 buffer[1] = "x";

174 for (uint256 i = 2 * length + 1; i > 1; --i) {

175 buffer[i] = _HEX_SYMBOLS[value & 0xf];

176 value >>= 4;

177 }

178

IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 174

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

173 buffer[1] = "x";

174 for (uint256 i = 2 * length + 1; i > 1; --i) {

175 buffer[i] = _HEX_SYMBOLS[value & 0xf];

176 value >>= 4;

177 }

178

IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "--" DISCOVERED
LINE 174

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

173 buffer[1] = "x";

174 for (uint256 i = 2 * length + 1; i > 1; --i) {

175 buffer[i] = _HEX_SYMBOLS[value & 0xf];

176 value >>= 4;

177 }

178

IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 299

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

298 bytes32 s = vs &

bytes32(0x7fff);

299 uint8 v = uint8((uint256(vs) >> 255) + 27);

300 return tryRecover(hash, v, r, s);

301 }

302

303

IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 904

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

903 address owner = _msgSender();

904 _approve(owner, spender, allowance(owner, spender) + addedValue);

905 return true;

906 }

907

908

IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 927

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

926 unchecked {

927 _approve(owner, spender, currentAllowance - subtractedValue);

928 }

929

930 return true;

931

IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 960

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

959 unchecked {

960 _balances[from] = fromBalance - amount;

961 }

962 _balances[to] += amount;

963

964

IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 962

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

961 }

962 _balances[to] += amount;

963

964 emit Transfer(from, to, amount);

965

966

IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 983

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

982

983 _totalSupply += amount;

984 _balances[account] += amount;

985 emit Transfer(address(0), account, amount);

986

987

IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 984

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

983 _totalSupply += amount;

984 _balances[account] += amount;

985 emit Transfer(address(0), account, amount);

986

987 _afterTokenTransfer(address(0), account, amount);

988

IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1009

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

1008 unchecked {

1009 _balances[account] = accountBalance - amount;

1010 }

1011 _totalSupply -= amount;

1012

1013

IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 1011

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

1010 }

1011 _totalSupply -= amount;

1012

1013 emit Transfer(account, address(0), amount);

1014

1015

IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1060

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

1059 unchecked {

1060 _approve(owner, spender, currentAllowance - amount);

1061 }

1062 }

1063 }

1064

IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1381

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

1380 require(recipients_.length <= 20, "Invalid recipients length");

1381 uint256 dec_ = 10**decimals();

1382 for (uint256 i = 0; i < recipients_.length; i++) {

1383 require(amounts_[i] > 0, "Amount is not positive");

1384 _mint(recipients_[i], amounts_[i] * dec_);

1385

IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1382

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

1381 uint256 dec_ = 10**decimals();

1382 for (uint256 i = 0; i < recipients_.length; i++) {

1383 require(amounts_[i] > 0, "Amount is not positive");

1384 _mint(recipients_[i], amounts_[i] * dec_);

1385 }

1386

IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1384

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

1383 require(amounts_[i] > 0, "Amount is not positive");

1384 _mint(recipients_[i], amounts_[i] * dec_);

1385 }

1386 }

1387

1388

IMPT | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 103

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

102 unchecked {

103 counter._value = value - 1;

104 }

105 }

106

107

IMPT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 71

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- IMPT.sol

Locations

70

71 pragma solidity ^0.8.0;

72

73 /**

74 * @title Counters

75

IMPT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 117

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- IMPT.sol

Locations

116

117 pragma solidity ^0.8.0;

118

119 /**

120 * @dev String operations.

121

IMPT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 195

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- IMPT.sol

Locations

194

195 pragma solidity ^0.8.0;

196

197

198 /**

199

IMPT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 415

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- IMPT.sol

Locations

414

415 pragma solidity ^0.8.0;

416

417

418 /**

419

IMPT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 521

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- IMPT.sol

Locations

520

521 pragma solidity ^0.8.0;

522

523 /**

524 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via

signatures, as defined in

525

IMPT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 584

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- IMPT.sol

Locations

583

584 pragma solidity ^0.8.0;

585

586 /**

587 * @dev Interface of the ERC20 standard as defined in the EIP.

588

IMPT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 669

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- IMPT.sol

Locations

668

669 pragma solidity ^0.8.0;

670

671

672 /**

673

IMPT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 699

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- IMPT.sol

Locations

698

699 pragma solidity ^0.8.0;

700

701 /**

702 * @dev Provides information about the current execution context, including the

703

IMPT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 726

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- IMPT.sol

Locations

725

726 pragma solidity ^0.8.0;

727

728

729

730

IMPT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1111

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- IMPT.sol

Locations

1110

1111 pragma solidity ^0.8.0;

1112

1113

1114

1115

IMPT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1208

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- IMPT.sol

Locations

1207

1208 pragma solidity ^0.8.0;

1209

1210

1211

1212

IMPT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1249

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- IMPT.sol

Locations

1248

1249 pragma solidity ^0.8.0;

1250

1251

1252 /**

1253

IMPT | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 145

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- IMPT.sol

Locations

144 digits -= 1;

145 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

146 value /= 10;

147 }

148 return string(buffer);

149

IMPT | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 172

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- IMPT.sol

Locations

171 bytes memory buffer = new bytes(2 * length + 2);

172 buffer[0] = "0";

173 buffer[1] = "x";

174 for (uint256 i = 2 * length + 1; i > 1; --i) {

175 buffer[i] = _HEX_SYMBOLS[value & 0xf];

176

IMPT | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 173

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- IMPT.sol

Locations

172 buffer[0] = "0";

173 buffer[1] = "x";

174 for (uint256 i = 2 * length + 1; i > 1; --i) {

175 buffer[i] = _HEX_SYMBOLS[value & 0xf];

176 value >>= 4;

177

IMPT | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 175

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- IMPT.sol

Locations

174 for (uint256 i = 2 * length + 1; i > 1; --i) {

175 buffer[i] = _HEX_SYMBOLS[value & 0xf];

176 value >>= 4;

177 }

178 require(value == 0, "Strings: hex length insufficient");

179

IMPT | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 175

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- IMPT.sol

Locations

174 for (uint256 i = 2 * length + 1; i > 1; --i) {

175 buffer[i] = _HEX_SYMBOLS[value & 0xf];

176 value >>= 4;

177 }

178 require(value == 0, "Strings: hex length insufficient");

179

IMPT | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1383

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- IMPT.sol

Locations

1382 for (uint256 i = 0; i < recipients_.length; i++) {

1383 require(amounts_[i] > 0, "Amount is not positive");

1384 _mint(recipients_[i], amounts_[i] * dec_);

1385 }

1386 }

1387

IMPT | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1384

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- IMPT.sol

Locations

1383 require(amounts_[i] > 0, "Amount is not positive");

1384 _mint(recipients_[i], amounts_[i] * dec_);

1385 }

1386 }

1387

1388

IMPT | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1384

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- IMPT.sol

Locations

1383 require(amounts_[i] > 0, "Amount is not positive");

1384 _mint(recipients_[i], amounts_[i] * dec_);

1385 }

1386 }

1387

1388

IMPT | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

IMPT | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

