IMPT

Smart Contract
Audit Report

@ SYSFIXED 04 Oct 2022

£ SYSFIXED

TABLE OF CONTENTS

| Audited Details

- Audited Project
- Blockchain
- Addresses

- Project Website
- Codebase

| Summary

- Contract Summary
- Audit Findings Summary
- Vulnerabilities Summary

| Conclusion

| Audit Results

| Smart Contract Analysis

- Detected Vulnerabilities

| Disclaimer

| About Us

IMPT | Security Analysis

£ SYSFIXED

AUDITED DETAILS

| Audited Project

IMPT | Security Analysis

Project name Token ticker Blockchain
IMPT IMPT Ethereum
| Addresses

Contract address

0x04c17b9d3b29a78f7bd062a57cf44fc633e71f85

Contract deployer address

0xae500791254Bc813F336c3A1054e31ADe2b583F1

| Project Website

https://www.impt.io/

| Codebase

https://etherscan.io/address/0x04¢17b9d3b29a78f7bd062a57cf44fc633e71f85#code

https://www.impt.io/
https://etherscan.io/address/0x04c17b9d3b29a78f7bd062a57cf44fc633e71f85#code

@ SYSFIXED IMPT | Security Analysis

SUMMARY

Join an impactful carbon offset program by investing in the IMPT token.

Become a part of a large ecosystem that connects socially responsible brands with businesses and individuals
who want to reduce their carbon footprint. Based on the blockchain, our platform empowers you to buy, sell, or
retire carbon credits while avoiding double counting and fraud.

| Contract Summary

Documentation Quality
IMPT provides a very good documentation with standard of solidity base code.
e The technical description is provided clearly and structured and also dont have any high risk issue.
Code Quality
The Overall quality of the basecode is standard.

¢ Standard solidity basecode and rules are already followed by IMPT with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

e SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 95, 103, 139, 140, 144, 145, 145,146,161, 171,171, 174,174,174, 299, 904, 927, 960, 962, 983, 984,
1009, 1011, 1060, 1381, 1382, 1384 and 103.

e SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 71, 117, 195,
415, 521, 584, 669, 699, 726, 1111, 1208 and 1249.

e SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 145, 172,173,175, 175, 1383, 1384 and 1384.

@ SYSFIXED IMPT | Security Analysis

CONCLUSION

We have audited the IMPT project released on October 2022 to discover issues and identify potential security
vulnerabilities in IMPT Project. This process is used to find technical issues and security loopholes which
might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the IMPT smart contract code do not pose a considerable risk. The writing of the contract
is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set and out of bounds array access which the index access expression
can cause an exception in case of the use of an invalid array index value.

@ SYSFIXED IMPT | Security Analysis

AUDIT RESULT

Article Category Description Result
SWC-100 Functions and state variables visibility should be
Default Visibility SWC-108 set explicitly. Visibility levels should be specified PASS
consciously.
Integer Overflow SRk T If unchecked math is used, all math operations ISSUE
and Underflow should be safe from overflows and underflows. FOUND
Outdated Compiler It is recommended to use a recent version of the
. SWC-102 L . PASS
Version Solidity compiler.
Contracts should be deployed with the same ISSUE
Floating Pragma SWC-103 compiler version and flags that they have been T
tested thoroughly.
Unchecked Call The return value of a message call should be
SWC-104 PASS
Return Value checked.
Unprotected Ether Due to missing or insufficient access controls,
. SWC-105 . i , PASS
Withdrawal malicious parties can withdraw from the contract.
SELFDESTRUCT The contract should not be self-destructible while it
. SWC-106 . PASS
Instruction has funds belonging to users.

Check effect interaction pattern should be followed
Reentrancy SWC-107)) PASS
if the code performs recursive call.

Uninitialized Uninitialized local storage variables can point to
. SWC-109 i . PASS
Storage Pointer unexpected storage locations in the contract.
L SWC-110 Properly functioning code should never reach a ISSUE
Assert Violation N
SWC-123 failing assert statement. FOUND
Deprecated Solidity o)
. SWC-111 Deprecated built-in functions should never be used. PASS
Functions
Delegate call to Delegatecalls should only be allowed to trusted
SWC-112 PASS

Untrusted Callee addresses.

£ SYSFIXED

DoS (Denial of
Service)

Race Conditions

Authorization
through tx.origin

Block values as a
proxy for time

Signature Unique
ID

Incorrect
Constructor Name

Shadowing State
Variable

Weak Sources of
Randomness

Write to Arbitrary
Storage Location

Incorrect
Inheritance Order

Insufficient Gas
Griefing

Arbitrary Jump
Function

SWC-113
SWC-128

SWC-114

SWC-115

SWC-116

SWC-117
SWC-121
SWC-122

SWC-118

SWC-119

SWC-120

SWC-124

SWC-125

SWC-126

SWC-127

IMPT | Security Analysis

Execution of the code should never be blocked by a specific
contract state unless required.

Race Conditions and Transactions Order Dependency
should not be possible.

tx.origin should not be used for authorization.

Block numbers should not be used for time calculations.

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

Constructors are special functions that are called only once
during the contract creation.

State variables should not be shadowed.

Random values should never be generated from Chain
Attributes or be predictable.

The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

£ SYSFIXED

Typographical
Error

Override control
character

Unused variables

Unexpected Ether
balance

Hash Collisions
Variable

Hardcoded gas
amount

Unencrypted
Private Data

SWC-129

SWC-130

SWC-131
SWC-135

SWC-132

SWC-133

SWC-134

SWC-136

IMPT | Security Analysis

A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

Contracts can behave erroneously when they strictly assume
a specific Ether balance.

Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

The transfer() and send() functions forward a fixed amount
of 2300 gas.

It is a common misconception that private type variables
cannot be read.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

@ SYSFIXED IMPT | Security Analysis

SMART CONTRACT ANALYSIS

Started Monday Oct 03 2022 23:16:45 GMT+0000 (Coordinated Universal Time)
Finished Tuesday Oct 04 2022 13:51:52 GMT+0000 (Coordinated Universal Time)
Mode Standard

Main Source File IMPT .sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/=" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/=" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

£ SYSFIXED

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 COMPILER-REWRITABLE "<UINT>- 1" DISCOVERED low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

£ SYSFIXED

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

@ SYSFIXED IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 95

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

94 unchecked {
95 counter. value += 1;

9% }
97 }
98

99

@ SYSFIXED IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 103

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

102 unchecked {
103 counter. value = value - 1;

104 }
105 }
106

107

@ SYSFIXED IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED

LINE 139

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

138 while (temp !'= 0) {

139 di gi t s++;

140 temp /= 10;

141}

142 bytes nmenory buffer = new bytes(digits);
143

@ SYSFIXED IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/=" DISCOVERED
LINE 140

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

139 di gi t s++;

140 temp /= 10;

141 }

142 bytes nmenory buffer = new bytes(digits);
143 while (value !'= 0) {

144

@ SYSFIXED IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 144

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

143 while (value !'= 0) {

144 digits -= 1;

145 buffer[digits] = bytesl(uint8(48 + uint256(value % 10)));
146 val ue /= 10;

147 }

148

@ SYSFIXED IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 145

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

144 digits -= 1;

145 buffer[digits] = bytesl(uint8(48 + uint256(value % 10)));
146 val ue /= 10;

147 }

148 return string(buffer);

149

@ SYSFIXED IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 145

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

144 digits -= 1;

145 buffer[digits] = bytesl(uint8(48 + uint256(value % 10)));
146 val ue /= 10;

147 }

148 return string(buffer);

149

@ SYSFIXED IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/=" DISCOVERED
LINE 146

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

145 buffer[digits] = bytesl(uint8(48 + uint256(value % 10)));
146 val ue /= 10;

147 }
148 return string(buffer);
149 }

150

@ SYSFIXED IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 161

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

160 while (temp !'= 0) {

161 | engt h++;

162 tenp >>= §;

163 }

164 return toHexString(val ue, |ength);
165

@ SYSFIXED IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 171

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

170 function toHexString(uint256 val ue, uint256 |ength) internal pure returns (string
menory) {

171 bytes menory buffer = new bytes(2 * length + 2);

172 buffer[0] = "0";

173 buffer[1] = "x";

174 for (uint256 i =2 * length + 1; i > 1; --i) {

175

@ SYSFIXED IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 171

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

170 function toHexString(uint256 val ue, uint256 |ength) internal pure returns (string
menory) {

171 bytes menory buffer = new bytes(2 * length + 2);

172 buffer[0] = "0";

173 buffer[1] = "x";

174 for (uint256 i =2 * length + 1; i > 1; --i) {

175

@ SYSFIXED IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 174

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

173 buffer[1] = "x";

174 for (uint256 i =2 * length + 1; i >1; --i) {
175 buffer[i] = _HEX SYMBOLS[val ue & Oxf];

176 val ue >>= 4;

177 }

178

@ SYSFIXED IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 174

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

173 buffer[1] = "x";

174 for (uint256 i =2 * length + 1; i >1; --i) {
175 buffer[i] = _HEX SYMBOLS[val ue & Oxf];

176 val ue >>= 4;

177 }

178

@ SYSFIXED IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "--" DISCOVERED
LINE 174

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

173 buffer[1] = "x";

174 for (uint256 i =2 * length + 1; i >1; --i) {
175 buffer[i] = _HEX SYMBOLS[val ue & Oxf];

176 val ue >>= 4;

177 }

178

@ SYSFIXED IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 299

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

298 bytes32 s = vs &
bytes32(Ox7fffffffffffffffffffffffffffifefffffffefefffffffffffffffffffreeeorer);
299 uint8 v = uint8((uint256(vs) >> 255) + 27);

300 return tryRecover (hash, v, r, s);

301 }

302

303

@ SYSFIXED IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 904

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol
Locations
903 address owner = _nsgSender();
904 _approve(owner, spender, allowance(owner, spender) + addedVal ue);
905 return true;
9206 }
907
908

@ SYSFIXED IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 927

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

926 unchecked {

927 _approve(owner, spender, currentAl |l owance - subtractedVal ue);
928 }

929

930 return true;

931

@ SYSFIXED IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 960

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

959 unchecked {

960 _bal ances[from = fronBal ance - anmount;
961 }

962 _bal ances[to] += anobunt;

963

964

@ SYSFIXED IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 962

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

961 }

962 _bal ances[to] += anount;

963

964 emt Transfer(from to, ampunt);
965

966

@ SYSFIXED IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 983

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

982

983 _total Supply += anount;

984 _bal ances[account] += anpunt;

985 emt Transfer(address(0), account, anount);
986

987

@ SYSFIXED IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 984

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

983 _total Supply += anount;

984 _Dbal ances[account] += anmpunt;

985 emt Transfer(address(0), account, anount);

986

987 _afterTokenTransfer (address(0), account, anount);

988

@ SYSFIXED IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1009

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

1008 unchecked {

1009 _bal ances[account] = account Bal ance - anount;
1010 }

1011 _total Supply -= anount;

1012

1013

@ SYSFIXED IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 1011

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

1010 }

1011 _total Supply -= anount;

1012

1013 emt Transfer(account, address(0), anount)
1014

1015

@ SYSFIXED IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1060

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

1059 unchecked {

1060 _approve(owner, spender, currentAllowance - anmount);
1061 }
1062 }
1063 }

1064

@ SYSFIXED IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1381

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

1380 require(recipients_.length <= 20, "Invalid recipients |ength");
1381 ui nt 256 dec_ = 10**deci mal s();

1382 for (uint256 i = 0; i < recipients_.length; i++) {
1383 require(anmounts_[i] > 0, "Anobunt is not positive");
1384 _mnt(recipients_[i], amounts_[i] * dec_);

1385

@ SYSFIXED IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1382

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

1381 ui nt 256 dec_ = 10**deci mal s();

1382 for (uint256 i = 0; i < recipients_.length; i++) {
1383 require(anmounts [i] > 0, "Anpbunt is not positive");
1384 _mnt(recipients_[i], anbunts _[i] * dec_);

1385 }

1386

@ SYSFIXED IMPT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1384

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

1383 requi re(amounts_[i] > 0, "Anmount is not positive");

1384 _mint(recipients_[i], amounts_[i] * dec_);
1385 }

1386 }

1387

1388

@ SYSFIXED IMPT | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 103

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- IMPT.sol

Locations

102 unchecked {
103 counter. value = value - 1;

104 }
105 }
106

107

@ SYSFIXED IMPT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 71

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- IMPT.sol
Locations
70
71 pragme solidity ~0.8.0;
72
73 [**
74 * @itle Counters
75

@ SYSFIXED IMPT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 117

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File

- IMPT.sol

Locations
116
117 pragna solidity ~0.8.0;
118
119 [/ **
120 * @lev String operations.
121

@ SYSFIXED IMPT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 195

low SEVERITY

The current pragma Solidity directive is ""*0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- IMPT.sol

Locations

194

195 pragma solidity ~0.8.0;
196

197

198 [**

199

@ SYSFIXED IMPT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 415

low SEVERITY

The current pragma Solidity directive is ""*0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- IMPT.sol

Locations

414

415 pragma solidity ~0.8.0;
416

417

418 [**

419

@ SYSFIXED IMPT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 521

low SEVERITY

The current pragma Solidity directive is ""*0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- IMPT.sol
Locations
520
521 pragma solidity ~0.8.0;
522
523 [**

524 * @lev Interface of the ERC20 Pernmit extension allowi ng approvals to be nmade via
signatures, as defined in
525

@ SYSFIXED IMPT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 584

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- IMPT.sol
Locations
583
584 pragma solidity ~0.8.0;
585
586 [Jes
587 * @lev Interface of the ERC20 standard as defined in the ElP.
588

@ SYSFIXED IMPT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 669

low SEVERITY

The current pragma Solidity directive is ""*0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- IMPT.sol

Locations

668

669 pragma solidity ~0.8.0;
670

671

672 [**

673

@ SYSFIXED IMPT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 699

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- IMPT.sol
Locations
698
699 pragma solidity ~0.8.0;
700
701 [Jes
702 * @lev Provides information about the current execution context, including the
703

@ SYSFIXED IMPT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 726

low SEVERITY

The current pragma Solidity directive is ""*0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- IMPT.sol

Locations

725
726 pragma solidity ~0.8.0;
727
728
729
730

@ SYSFIXED IMPT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1111

low SEVERITY

The current pragma Solidity directive is ""*0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- IMPT.sol

Locations

1110
1111 pragme solidity ~0.8.0;
1112
1113
1114
1115

@ SYSFIXED IMPT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1208

low SEVERITY

The current pragma Solidity directive is ""*0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- IMPT.sol

Locations

1207
1208 pragma solidity ~0.8.0;
1209
1210
1211
1212

@ SYSFIXED IMPT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1249

low SEVERITY

The current pragma Solidity directive is ""*0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- IMPT.sol

Locations

1248

1249 pragma solidity ~0.8.0;
1250

1251

1252 [**

1253

@ SYSFIXED IMPT | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 145

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- IMPT.sol

Locations

144 digits -= 1;

145 buffer[digits] = bytesl(uint8(48 + uint256(value % 10)));
146 val ue /= 10;

147 }

148 return string(buffer);

149

@ SYSFIXED IMPT | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 172

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- IMPT.sol

Locations

171 bytes nenory buffer = new bytes(2 * length + 2);
172 buffer[0] = "0";

173 buffer[1] = "x";

174 for (uint256 i =2 * length + 1; i >1; --i) {
175 buffer[i] = _HEX SYMBOLS[val ue & 0xf];

176

@ SYSFIXED IMPT | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 173

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- IMPT.sol

Locations

172 buffer[0] = "0";

173 buffer[1] = "x";
174 for (uint256 i =2 * length + 1; i >1; --i) {
175 buffer[i] = _HEX SYMBOLS[val ue & Oxf];

176 val ue >>= 4;
177

@ SYSFIXED IMPT | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 175

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- IMPT.sol
Locations
174 for (uint256 i =2 * length + 1; i >1; --i) {
175 buffer[i] = _HEX SYMBOLS[val ue & Oxf];
176 val ue >>= 4;
177}
178 requi re(value == 0, "Strings: hex length insufficient");
179

@ SYSFIXED IMPT | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 175

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- IMPT.sol
Locations
174 for (uint256 i =2 * length + 1; i >1; --i) {
175 buffer[i] = _HEX SYMBOLS[val ue & Oxf];
176 val ue >>= 4;
177}
178 requi re(value == 0, "Strings: hex length insufficient");
179

@ SYSFIXED IMPT | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1383

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File

- IMPT.sol

Locations
1382 for (uint256 i = 0; i < recipients_.length; i++) {
1383 requi re(amounts_[i] > 0, "Amount is not positive");
1384 ~mnt(recipients [i], anobunts [i] * dec);
1385 }
1386 }
1387

@ SYSFIXED IMPT | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1384

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- IMPT.sol

Locations

1383 requi re(amounts_[i] > 0, "Anmount is not positive");

1384 _mint(recipients_[i], amounts_[i] * dec_);
1385 }

1386 }

1387

1388

@ SYSFIXED IMPT | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1384

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- IMPT.sol

Locations

1383 requi re(amounts_[i] > 0, "Anmount is not positive");

1384 _mint(recipients_[i], amounts_[i] * dec_);
1385 }

1386 }

1387

1388

@ SYSFIXED IMPT | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below - please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

@ SYSFIXED IMPT | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

