Kuro Shiba

Smart Contract
Audit Report

@ SYSFIXED 12 Jun 2021

£ SYSFIXED

TABLE OF CONTENTS

| Audited Details

- Audited Project
- Blockchain
- Addresses

- Project Website
- Codebase

| Summary

- Contract Summary
- Audit Findings Summary
- Vulnerabilities Summary

| Conclusion

| Audit Results

| Smart Contract Analysis

- Detected Vulnerabilities

| Disclaimer

| About Us

Kuro Shiba | Security Analysis

@ SYSFIXED Kuro Shiba | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain
Kuro Shiba KURO Harmony

| Addresses
Contract address 0x3e018675c0ef63eb361b9ef4bfea3a3294c74c7b
Contract deployer address 0xD68B99856d08B463a6aaAbACC6377bf5aCB92233

| Project Website

https://beta.kuroshiba.one/

| Codebase

https://explorer.harmony.one/address/0x3e018675c0ef63eb361b9ef4bfea3a3294c74c7b?activeTab=7

https://beta.kuroshiba.one/
https://explorer.harmony.one/address/0x3e018675c0ef63eb361b9ef4bfea3a3294c74c7b?activeTab=7

@ SYSFIXED Kuro Shiba | Security Analysis

SUMMARY

Kuro Shiba (KURO) is the cutest community token on the Harmony network, offering 5% automatic rewards for
holders and exclusive NFT airdrops for liquidity providers!

| Contract Summary

Documentation Quality
Kuro Shiba provides a very good documentation with standard of solidity base code.
e The technical description is provided clearly and structured and also dont have any high risk issue.
Code Quality
The Overall quality of the basecode is standard.

e Standard solidity basecode and rules are already followed by Kuro Shiba with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

e SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 238.

e SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 32, 34, 35, 35, 37, 39, 123, 269, 269, 271, 271, 381, 383, 410, 450, 463, 469 and 383.

¢ SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 1.

e SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 382, 383, 383, 451, 451, 452 and 453.

@ SYSFIXED Kuro Shiba | Security Analysis

CONCLUSION

We have audited the Kuro Shiba project released on june 2023 to discover issues and identify potential security
vulnerabilities in Kuro Shiba Project. This process is used to find technical issues and security loopholes which
might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the Kuro Shiba smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a state variable visibility is not set, and out-of-bounds array access
which the index access expression can cause an exception in case of the use of an invalid array index value. It
is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary
between builds. This is especially important if you rely on bytecode-level verification of the code. It is best
practice to set the visibility of state variables explicitly. The default visibility for "BURN_ADDRESS" is internal.
Other possible visibility settings are public and private.

@ SYSFIXED Kuro Shiba | Security Analysis

AUDIT RESULT

Article Category Description Result
Functions and state variables visibility should be
- SWC-100 . . - ISSUE
Default Visibility set explicitly. Visibility levels should be specified
SWC-108 . FOUND
consciously.
Integer Overflow SRk T If unchecked math is used, all math operations ISSUE
and Underflow should be safe from overflows and underflows. FOUND
Outdated Compiler It is recommended to use a recent version of the
. SWC-102 L . PASS
Version Solidity compiler.
Contracts should be deployed with the same ISSUE
Floating Pragma SWC-103 compiler version and flags that they have been T
tested thoroughly.
Unchecked Call The return value of a message call should be
SWC-104 PASS
Return Value checked.
Unprotected Ether Due to missing or insufficient access controls,
. SWC-105 . i , PASS
Withdrawal malicious parties can withdraw from the contract.
SELFDESTRUCT The contract should not be self-destructible while it
. SWC-106 . PASS
Instruction has funds belonging to users.

Check effect interaction pattern should be followed
Reentrancy SWC-107)) PASS
if the code performs recursive call.

Uninitialized Uninitialized local storage variables can point to
. SWC-109 i . PASS
Storage Pointer unexpected storage locations in the contract.
L SWC-110 Properly functioning code should never reach a ISSUE
Assert Violation N
SWC-123 failing assert statement. FOUND
Deprecated Solidity o)
. SWC-111 Deprecated built-in functions should never be used. PASS
Functions
Delegate call to Delegatecalls should only be allowed to trusted
SWC-112 PASS

Untrusted Callee addresses.

£ SYSFIXED

DoS (Denial of
Service)

Race Conditions

Authorization
through tx.origin

Block values as a
proxy for time

Signature Unique
ID

Incorrect
Constructor Name

Shadowing State
Variable

Weak Sources of
Randomness

Write to Arbitrary
Storage Location

Incorrect
Inheritance Order

Insufficient Gas
Griefing

Arbitrary Jump
Function

SWC-113
SWC-128

SWC-114

SWC-115

SWC-116

SWC-117
SWC-121
SWC-122

SWC-118

SWC-119

SWC-120

SWC-124

SWC-125

SWC-126

SWC-127

Kuro Shiba | Security Analysis

Execution of the code should never be blocked by a specific
contract state unless required.

Race Conditions and Transactions Order Dependency
should not be possible.

tx.origin should not be used for authorization.

Block numbers should not be used for time calculations.

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

Constructors are special functions that are called only once
during the contract creation.

State variables should not be shadowed.

Random values should never be generated from Chain
Attributes or be predictable.

The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

£ SYSFIXED

Kuro Shiba | Security Analysis

Typographical A typographical error can occur for example when the intent
SWC-129) o 4 PASS
Error of a defined operation is to sum a number to a variable.
. Malicious actors can use the Right-To-Left-Override unicode
Override control .
h ¢ SWC-130 character to force RTL text rendering and confuse users as PASS
character
to the real intent of a contract.
. SWC-131 Unused variables are allowed in Solidity and they do not pose
Unused variables) o PASS
SWC-135 a direct security issue.
Unexpected Ether Contracts can behave erroneously when they strictly assume
SWC-132 . PASS
balance a specific Ether balance.
Hash Collisions Using abi.encodePacked() with multiple variable length
. SWC-133 . L Ey PASS
Variable arguments can, in certain situations, lead to a hash collision.
Hardcoded gas The transfer() and send() functions forward a fixed amount
SWC-134 PASS
amount of 2300 gas.
Unencrypted It is a common misconception that private type variables
SWC-136 PASS

Private Data

cannot be read.

@ SYSFIXED Kuro Shiba | Security Analysis

SMART CONTRACT ANALYSIS

Started Friday Jun 11 2021 10:20:26 GMT+0000 (Coordinated Universal Time)
Finished Saturday Jun 12 2021 03:28:50 GMT+0000 (Coordinated Universal Time)
Mode Standard

Main Source File NotSafeMoon.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

£ SYSFIXED

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

@ SYSFIXED Kuro Shiba | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 32

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- NotSafeMoon.sol

Locations

31 l'ibrary SafeMath {

32 function add(uint256 a, uint256 b) internal pure returns (uint256) {uint256 c = a +
b; require(c >= a, "SafeMath: addition overflow'); return c;}

33 function sub(uint256 a, uint256 b) internal pure returns (uint256) {return sub(a, b,
"Saf eivat h: subtraction overflow');}

34 function sub(uint256 a, uint256 b, string nenory errorMessage) internal pure returns
(uint256) {require(b <= a, errorMessage);uint256 ¢ = a - b;return c;}

35 function nul (uint256 a, uint256 b) internal pure returns (uint256) {if (a == 0)
{return O;}uint256 ¢ = a * b;require(c / a == b, "SafeMath: multiplication
overflow');return c;}

36

@ SYSFIXED Kuro Shiba | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 34

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- NotSafeMoon.sol

Locations

33 function sub(uint256 a, uint256 b) internal pure returns (uint256) {return sub(a, b,
"Saf eMat h: subtraction overflow');}

34 function sub(uint256 a, uint256 b, string nenory errorMessage) internal pure returns
(uint256) {require(b <= a, errorMessage);uint256 ¢ = a - b;return c;}

35 function mul (uint256 a, uint256 b) internal pure returns (uint256) {if (a == 0)
{return O;}uint256 ¢ = a * b;require(c / a == b, "SafeMath: multiplication
overflow');return c;}

36 function div(uint256 a, uint256 b) internal pure returns (uint256) {return div(a, b,
"Saf eMat h: division by zero");}

37 function div(uint256 a, uint256 b, string nmenory errorMessage) internal pure returns
(uint256) {require(b > 0, errorMessage);uint256 ¢ = a / b;return c;}

38

@ SYSFIXED Kuro Shiba | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 35

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- NotSafeMoon.sol

Locations

34 function sub(uint256 a, uint256 b, string nmenory errorMessage) internal pure returns
(uint256) {require(b <= a, errorMessage);uint256 ¢ = a - b;return c;}

35 function mul (uint256 a, uint256 b) internal pure returns (uint256) {if (a == 0)
{return O;}uint256 ¢ = a * b;require(c / a == b, "SafeMath: mnultiplication
overflow');return c;}

36 function div(uint256 a, uint256 b) internal pure returns (uint256) {return div(a, b,
"Saf eivat h: division by zero");}

37 function div(uint256 a, uint256 b, string nmenory errorMessage) internal pure returns
(uint256) {require(b > 0, errorMessage);uint256 c = a / b;return c;}

38 function nmod(uint256 a, uint256 b) internal pure returns (uint256) {return nod(a, b,
"Saf eMat h: nodul o by zero");}

39

@ SYSFIXED Kuro Shiba | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 35

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- NotSafeMoon.sol

Locations

34 function sub(uint256 a, uint256 b, string nmenory errorMessage) internal pure returns
(uint256) {require(b <= a, errorMessage);uint256 ¢ = a - b;return c;}

35 function mul (uint256 a, uint256 b) internal pure returns (uint256) {if (a == 0)
{return O;}uint256 ¢ = a * b;require(c / a == b, "SafeMath: mnultiplication
overflow');return c;}

36 function div(uint256 a, uint256 b) internal pure returns (uint256) {return div(a, b,
"Saf eivat h: division by zero");}

37 function div(uint256 a, uint256 b, string nmenory errorMessage) internal pure returns
(uint256) {require(b > 0, errorMessage);uint256 c = a / b;return c;}

38 function nmod(uint256 a, uint256 b) internal pure returns (uint256) {return nod(a, b,
"Saf eMat h: nodul o by zero");}

39

@ SYSFIXED Kuro Shiba | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 37

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- NotSafeMoon.sol

Locations

36 function div(uint256 a, uint256 b) internal pure returns (uint256) {return div(a, b,
"Saf eMvat h: division by zero");}

37 function div(uint256 a, uint256 b, string nenory errorMessage) internal pure returns
(uint256) {require(b > 0, errorMessage);uint256 ¢ = a / b;return c;}

38 function nod(uint256 a, uint256 b) internal pure returns (uint256) {return nod(a, b,
"Saf eMat h: nodul o by zero");}

39 function nod(uint256 a, uint256 b, string nenory errorMessage) internal pure returns
(uint256) {require(b !'= 0, errorMessage);return a %b;}

40 }

41

@ SYSFIXED Kuro Shiba | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 39

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- NotSafeMoon.sol

Locations

38 function nmod(uint256 a, uint256 b) internal pure returns (uint256) {return nod(a, b,

"Saf eMat h: nodul o by zero");}

39 function nmod(uint256 a, uint256 b, string nenory errorMessage) internal pure returns
(uint256) {require(b !'= 0, errorMessage);return a %b;}

40 }

41

42 abstract contract Context {

43

@ SYSFIXED Kuro Shiba | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 123

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- NotSafeMoon.sol

Locations

122 _owner = address(0);

123 _lockTinme = block.tinestanp + tine;

124 emt Ownershi pTransferred(_owner, address(0));
125 }

126

127

@ SYSFIXED Kuro Shiba | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 269

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- NotSafeMoon.sol

Locations

268 _burnFee = burnFee_;

269 _tTotal = total Supply_. mul (10**6). mul (10**ui nt 256(deci mal s_));
270 _rTotal = MAX. sub(MAX. mod(_tTotal));

271 _maxTxAmount = maxTx_. mul (10**6) . mul (10**ui nt 256(deci mal s_));
272 _rOwned[_nsgSender ()] = _rTotal;

273

@ SYSFIXED Kuro Shiba | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 269

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- NotSafeMoon.sol

Locations

268 _burnFee = burnFee_;

269 _tTotal = total Supply_. mul (10**6). mul (10**ui nt 256(deci mal s_));
270 _rTotal = MAX. sub(MAX. mod(_tTotal));

271 _maxTxAmount = maxTx_. mul (10**6) . mul (10**ui nt 256(deci mal s_));
272 _rOwned[_nsgSender ()] = _rTotal;

273

@ SYSFIXED Kuro Shiba | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 271

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- NotSafeMoon.sol

Locations

270 _rTotal = MAX. sub(MAX. nmod(_tTotal));

271 _maxTxAnount = maxTx_. nmul (10**6) . mul (10**ui nt 256(deci mal s_));

272 _rOmned[_nsgSender()] = _rTotal;

273 I Uni swapV2Rout er 02 _uni swapV2Rout er = | Uni swapV2Rout er 02(uni V2Rout er Addr ess_) ;
274

275

@ SYSFIXED Kuro Shiba | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 271

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- NotSafeMoon.sol

Locations

270 _rTotal = MAX. sub(MAX. nmod(_tTotal));

271 _maxTxAnount = maxTx_. nmul (10**6) . mul (10**ui nt 256(deci mal s_));

272 _rOmned[_nsgSender()] = _rTotal;

273 I Uni swapV2Rout er 02 _uni swapV2Rout er = | Uni swapV2Rout er 02(uni V2Rout er Addr ess_) ;
274

275

@ SYSFIXED Kuro Shiba | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED

LINE 381

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- NotSafeMoon.sol

Locations

380
381
382
383
384
385

requi re(_i sexcl udedFromRewar d[account], "Account is already excluded");

for (uint256 i = 0; i < _excludedFronReward.|ength; i++) {
i f (_excludedFronReward[i] == account) {
_excl udedFronmReward[i] = _excl udedFr onRewar d[_excl udedFronReward. | ength - 1];

_tOmned[account] = 0;

@ SYSFIXED Kuro Shiba | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 383

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- NotSafeMoon.sol

Locations
382 i f (_excludedFronReward[i] == account) {
383 _excludedFronReward[i] = _excl udedFronRewar d[_excl udedFronReward. | ength - 1];
384 _t Omned[account] = 0;
385 _i sExcl udedFr omRewar d[account] = fal se;
386 _excl udedFronRewar d. pop();
387

@ SYSFIXED Kuro Shiba | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 410

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- NotSafeMoon.sol

Locations
409 _maxTxAmount = _tTotal . mul (nmaxTxPercent). di v(
410 10**2
411);
412}
413
414

@ SYSFIXED Kuro Shiba | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 450

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- NotSafeMoon.sol

Locations

449 ui nt 256 tSupply = _tTotal;

450 for (uint256 i = 0; i < _excludedFronReward.|ength; i++) {

451 if (_rOmed[_excludedFronReward[i]] > rSupply || _tOmed[_excludedFronReward[i]] >
t Supply) return (_rTotal, _tTotal);

452 r Suppl y r Suppl y. sub(_r Omed[_excl udedFronReward[i]]);

453 t Suppl y t Suppl y. sub(_t Owned[_excl udedFronReward[i]]);

454

@ SYSFIXED Kuro Shiba | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 463

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- NotSafeMoon.sol

Locations

462 return _anmount. mul (_rewardFee). di v(

463 10**2
464)
465 }

466

467

@ SYSFIXED Kuro Shiba | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 469

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- NotSafeMoon.sol

Locations

468 return _anmount. mul (_burnFee). di v(

469 10**2
470);
471}

472

473

@ SYSFIXED Kuro Shiba | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 383

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- NotSafeMoon.sol

Locations
382 i f (_excludedFronReward[i] == account) {
383 _excludedFronmReward[i] = _excl udedFronmRewar d[_excl udedFronReward. | ength - 1];
384 _t Omned[account] = 0;
385 _i sExcl udedFr omRewar d[account] = fal se;
386 _excl udedFronRewar d. pop();
387

@ SYSFIXED Kuro Shiba | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1

low SEVERITY

The current pragma Solidity directive is ""*0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- NotSafeMoon.sol

Locations

pragna solidity ~0.8.0;
/| SPDX-License-ldentifier: Unlicensed

interface | ERC20 {

ga b~ wNBEF— O

@ SYSFIXED Kuro Shiba | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 238

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "BURN_ADDRESS" is
internal. Other possible visibility settings are public and private.

Source File
- NotSafeMoon.sol

Locations

237

238 address BURN_ADDRESS = 0x0000000000000000000000000000000000000001;
239

240 ui nt 256 private constant MAX = ~ui nt 256(0);

241 ui nt 256 private _tTotal;

242

@ SYSFIXED Kuro Shiba | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 382

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- NotSafeMoon.sol

Locations
381 for (uint256 i = 0; i < _excludedFronReward.|ength; i++) {
382 i f (_excludedFronReward[i] == account) {
383 _excl udedFronmReward[i] = _excl udedFronRewar d[_excl udedFronReward. | ength - 1];
384 _t Omned[account] = 0;
385 i sExcludedFronReward[account] = fal se;
386

@ SYSFIXED Kuro Shiba | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 383

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- NotSafeMoon.sol

Locations
382 i f (_excludedFronReward[i] == account) {
383 _excludedFronReward[i] = _excl udedFronRewar d[_excl udedFronReward. | ength - 1];
384 _t Omned[account] = 0;
385 _i sExcl udedFr omRewar d[account] = fal se;
386 _excl udedFronRewar d. pop();
387

@ SYSFIXED Kuro Shiba | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 383

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- NotSafeMoon.sol

Locations
382 i f (_excludedFronReward[i] == account) {
383 _excludedFronReward[i] = _excl udedFronRewar d[_excl udedFronReward. | ength - 1];
384 _t Omned[account] = 0;
385 _i sExcl udedFr omRewar d[account] = fal se;
386 _excl udedFronRewar d. pop();
387

@ SYSFIXED Kuro Shiba | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 451

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- NotSafeMoon.sol

Locations
450 for (uint256 i = 0; i < _excludedFronReward.|ength; i++) {
451 if (_rOmed[_excludedFronReward[i]] > rSupply || _tOmed[_excludedFronReward[i]] >

t Supply) return (_rTotal, _tTotal);

452 rSupply = rSupply. sub(_rOwed[_excl udedFronReward[i]]);
453 t Suppl y t Suppl y. sub(_t Owned[_excl udedFronReward[i]]);
454 }

455

@ SYSFIXED Kuro Shiba | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 451

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- NotSafeMoon.sol

Locations
450 for (uint256 i = 0; i < _excludedFronReward.|ength; i++) {
451 if (_rOmed[_excludedFronReward[i]] > rSupply || _tOmed[_excludedFronReward[i]] >

t Supply) return (_rTotal, _tTotal);

452 rSupply = rSupply. sub(_rOwed[_excl udedFronReward[i]]);
453 t Suppl y t Suppl y. sub(_t Owned[_excl udedFronReward[i]]);
454 }

455

@ SYSFIXED Kuro Shiba | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 452

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- NotSafeMoon.sol

Locations

451 if (_rOmed[_excludedFronReward[i]] > rSupply || _tOmed[_excludedFronReward[i]] >
t Supply) return (_rTotal, _tTotal);

452 rSupply = rSupply. sub(_rOaned[excl udedFronReward[i]]);

453 t Supply = t Supply. sub(_t Omed[_excl udedFronmReward[i]]);

454 }

455 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

456

@ SYSFIXED Kuro Shiba | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 453

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- NotSafeMoon.sol

Locations

452 r Suppl y
453 t Suppl y
454 }

455 if (rSupply < rTotal.div(_tTotal)) return (_rTotal, _tTotal);
456 return (rSupply, tSupply);

457

r Suppl y. sub(_r Omed[_excl udedFr onReward[i]]);
t Suppl y. sub(_t Owned[_excl udedFronReward[i]]);

@ SYSFIXED Kuro Shiba | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below - please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

@ SYSFIXED Kuro Shiba | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

