
FBcoin.live Coin

Smart Contract
Audit Report

18 Jan 2022

FBcoin.live Coin | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

FBcoin.live Coin | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

FBcoin.live Coin FB Binance Smart Chain

| Addresses

Contract address 0x770f030fdbf63ebf1c939de8bcff8943c2c2d454

Contract deployer address 0x189ACf59cCf0844C67058d80Ebf2f4D47560BfE5

| Project Website

https://github.com/cubeforex/FBBank

| Codebase

https://bscscan.com/address/0x770f030fdbf63ebf1c939de8bcff8943c2c2d454#code

https://github.com/cubeforex/FBBank
https://bscscan.com/address/0x770f030fdbf63ebf1c939de8bcff8943c2c2d454#code

FBcoin.live Coin | Security Analysis

SUMMARY

FBBank is the Web3 world's first decentralized crypto fund. It uses the DAO organization form of the
blockchain to build an investment system, which is an unprecedented new financial organization. The FBBank
project is committed to solving the shortcomings of ordinary investors, focusing on solving various pain points
of ordinary investors, and helping investors to effectively avoid investment decision mistakes caused by
various psychological factors. With its excellent results, FBBank has successfully obtained strategic
cooperation support from well-known Web3 wallets and DeFi institutions such as Bitkeep, Onto, OKC, CoinHub,
CherrySwap, HyperPay, and Ivy Market.

| Contract Summary

Documentation Quality

FBcoin.live Coin provides a very poor documentation with standard of solidity base code.

The technical description is provided unclear and disorganized.

Code Quality

The Overall quality of the basecode is poor.

Solidity basecode and rules are unclear and disorganized by FBcoin.live Coin.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 71, 86, 97, 106, 119, 128,
137, 147 and 153.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 10.
SWC-111 | It is recommended to use alternatives to the deprecated constructions on lines 42, 87, 88, 89,
90, 99, 107, 108, 109, 110, 111, 120, 121, 129, 130, 138, 139 and 148.

FBcoin.live Coin | Security Analysis

CONCLUSION

We have audited the FBcoin.live Coin project released on January 2022 to find issues and identify potential
security vulnerabilities in FBcoin.live Coin project. This process is used to find technical issues and security
loopholes that may be found in smart contracts.

The security audit report yielded unsatisfactory results, discovering medium-risk and low-risk issues.

Writing a contract that does not follow the Solidity style guide can pose a significant risk. The serious and low
problems we found in the smart contract are the built-in symbol "assert" shadowing and the definition "assert"
using the same name as a built-in symbol. Reserved names should not be used to avoid confusion. Low-risk
found are a floating pragma is set, and the "throw" keyword is deprecated. The current pragma Solidity
directive is ""^0.4.12"". Specifying a fixed compiler version is recommended to ensure that the bytecode
produced does not vary between builds. This is especially important if you rely on bytecode-level verification of
the code. "throw" is disallowed as of Solidity version 0.5.0. Use one of "revert()", "require()" or "assert()" instead

We were recommended to keep being aware of investing in this risky smart contract.

FBcoin.live Coin | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

PASS

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

PASS

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used.
ISSUE

FOUND

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

FBcoin.live Coin | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

FBcoin.live Coin | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

FBcoin.live Coin | Security Analysis

SMART CONTRACT ANALYSIS

Started Monday Jan 17 2022 00:20:43 GMT+0000 (Coordinated Universal Time)

Finished Tuesday Jan 18 2022 21:52:04 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File FB.sol

| Detected Issues

ID Title Severity Status

SWC-000 BUILTIN SYMBOL "ASSERT" SHADOWING medium acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-111 USE OF THE "THROW" KEYWORD IS DEPRECATED. low acknowledged

SWC-111 USE OF THE "THROW" KEYWORD IS DEPRECATED. low acknowledged

SWC-111 USE OF THE "THROW" KEYWORD IS DEPRECATED. low acknowledged

SWC-111 USE OF THE "THROW" KEYWORD IS DEPRECATED. low acknowledged

SWC-111 USE OF THE "THROW" KEYWORD IS DEPRECATED. low acknowledged

SWC-111 USE OF THE "THROW" KEYWORD IS DEPRECATED. low acknowledged

SWC-111 USE OF THE "THROW" KEYWORD IS DEPRECATED. low acknowledged

SWC-111 USE OF THE "THROW" KEYWORD IS DEPRECATED. low acknowledged

SWC-111 USE OF THE "THROW" KEYWORD IS DEPRECATED. low acknowledged

SWC-111 USE OF THE "THROW" KEYWORD IS DEPRECATED. low acknowledged

SWC-111 USE OF THE "THROW" KEYWORD IS DEPRECATED. low acknowledged

SWC-111 USE OF THE "THROW" KEYWORD IS DEPRECATED. low acknowledged

SWC-111 USE OF THE "THROW" KEYWORD IS DEPRECATED. low acknowledged

SWC-111 USE OF THE "THROW" KEYWORD IS DEPRECATED. low acknowledged

SWC-111 USE OF THE "THROW" KEYWORD IS DEPRECATED. low acknowledged

SWC-111 USE OF THE "THROW" KEYWORD IS DEPRECATED. low acknowledged

SWC-111 USE OF THE "THROW" KEYWORD IS DEPRECATED. low acknowledged

SWC-111 USE OF THE "THROW" KEYWORD IS DEPRECATED. low acknowledged

FBcoin.live Coin | Security Analysis

SWC-000 | BUILTIN SYMBOL "ASSERT" SHADOWING
LINE 40

medium SEVERITY
Definition "assert" uses the same name as a built-in symbol. Reserved names should not be used to avoid
confusion.

Source File
- FB.sol

Locations

39

40 function assert(bool assertion) internal {

41 if (!assertion) {

42 throw;

43 }

44

FBcoin.live Coin | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 71

low SEVERITY
The function definition of "FB" lacks a visibility specifier. Note that the compiler assumes "public" visibility by
default. Function visibility should always be specified explicitly to assure correctness of the code and improve
readability.

Source File
- FB.sol

Locations

70 /* Initializes contract with initial supply tokens to the creator of the contract */

71 function FB(

72 uint256 initialSupply,

73 string tokenName,

74 uint8 decimalUnits,

75

FBcoin.live Coin | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 86

low SEVERITY
The function definition of "transfer" lacks a visibility specifier. Note that the compiler assumes "public" visibility
by default. Function visibility should always be specified explicitly to assure correctness of the code and
improve readability.

Source File
- FB.sol

Locations

85 /* Send coins */

86 function transfer(address _to, uint256 _value) {

87 if (_to == 0x0) throw; // Prevent transfer to 0x0

address. Use burn() instead

88 if (_value <= 0) throw;

89 if (balanceOf[msg.sender] < _value) throw; // Check if the sender has

enough

90

FBcoin.live Coin | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 97

low SEVERITY
The function definition of "approve" lacks a visibility specifier. Note that the compiler assumes "public" visibility
by default. Function visibility should always be specified explicitly to assure correctness of the code and
improve readability.

Source File
- FB.sol

Locations

96 /* Allow another contract to spend some tokens in your behalf */

97 function approve(address _spender, uint256 _value)

98 returns (bool success) {

99 if (_value <= 0) throw;

100 allowance[msg.sender][_spender] = _value;

101

FBcoin.live Coin | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 106

low SEVERITY
The function definition of "transferFrom" lacks a visibility specifier. Note that the compiler assumes "public"
visibility by default. Function visibility should always be specified explicitly to assure correctness of the code
and improve readability.

Source File
- FB.sol

Locations

105 /* A contract attempts to get the coins */

106 function transferFrom(address _from, address _to, uint256 _value) returns (bool

success) {

107 if (_to == 0x0) throw; // Prevent transfer to 0x0

address. Use burn() instead

108 if (_value <= 0) throw;

109 if (balanceOf[_from] < _value) throw; // Check if the sender has

enough

110

FBcoin.live Coin | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 119

low SEVERITY
The function definition of "burn" lacks a visibility specifier. Note that the compiler assumes "public" visibility by
default. Function visibility should always be specified explicitly to assure correctness of the code and improve
readability.

Source File
- FB.sol

Locations

118

119 function burn(uint256 _value) returns (bool success) {

120 if (balanceOf[msg.sender] < _value) throw; // Check if the sender has

enough

121 if (_value <= 0) throw;

122 balanceOf[msg.sender] = SafeMath.safeSub(balanceOf[msg.sender],

_value); // Subtract from the sender

123

FBcoin.live Coin | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 128

low SEVERITY
The function definition of "freeze" lacks a visibility specifier. Note that the compiler assumes "public" visibility
by default. Function visibility should always be specified explicitly to assure correctness of the code and
improve readability.

Source File
- FB.sol

Locations

127

128 function freeze(uint256 _value) returns (bool success) {

129 if (balanceOf[msg.sender] < _value) throw; // Check if the sender has

enough

130 if (_value <= 0) throw;

131 balanceOf[msg.sender] = SafeMath.safeSub(balanceOf[msg.sender],

_value); // Subtract from the sender

132

FBcoin.live Coin | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 137

low SEVERITY
The function definition of "unfreeze" lacks a visibility specifier. Note that the compiler assumes "public"
visibility by default. Function visibility should always be specified explicitly to assure correctness of the code
and improve readability.

Source File
- FB.sol

Locations

136

137 function unfreeze(uint256 _value) returns (bool success) {

138 if (freezeOf[msg.sender] < _value) throw; // Check if the sender has

enough

139 if (_value <= 0) throw;

140 freezeOf[msg.sender] = SafeMath.safeSub(freezeOf[msg.sender],

_value); // Subtract from the sender

141

FBcoin.live Coin | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 147

low SEVERITY
The function definition of "withdrawEther" lacks a visibility specifier. Note that the compiler assumes "public"
visibility by default. Function visibility should always be specified explicitly to assure correctness of the code
and improve readability.

Source File
- FB.sol

Locations

146 // transfer balance to owner

147 function withdrawEther(uint256 amount) {

148 if(msg.sender != owner)throw;

149 owner.transfer(amount);

150 }

151

FBcoin.live Coin | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 153

low SEVERITY
The function definition of "" lacks a visibility specifier. Note that the compiler assumes "public" visibility by
default. Function visibility should always be specified explicitly to assure correctness of the code and improve
readability.

Source File
- FB.sol

Locations

152 // can accept ether

153 function() payable {

154 }

155 }

156

FBcoin.live Coin | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 10

low SEVERITY
The current pragma Solidity directive is ""^0.4.12"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- FB.sol

Locations

9

10 pragma solidity ^0.4.12;

11

12 /**

13 * Math operations with safety checks

14

FBcoin.live Coin | Security Analysis

SWC-111 | USE OF THE "THROW" KEYWORD IS DEPRECATED.
LINE 42

low SEVERITY
"throw" is disallowed as of Solidity version 0.5.0. Use one of "revert()", "require()" or "assert()" instead

Source File
- FB.sol

Locations

41 if (!assertion) {

42 throw;

43 }

44 }

45 }

46

FBcoin.live Coin | Security Analysis

SWC-111 | USE OF THE "THROW" KEYWORD IS DEPRECATED.
LINE 87

low SEVERITY
"throw" is disallowed as of Solidity version 0.5.0. Use one of "revert()", "require()" or "assert()" instead

Source File
- FB.sol

Locations

86 function transfer(address _to, uint256 _value) {

87 if (_to == 0x0) throw; // Prevent transfer to 0x0

address. Use burn() instead

88 if (_value <= 0) throw;

89 if (balanceOf[msg.sender] < _value) throw; // Check if the sender has

enough

90 if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows

91

FBcoin.live Coin | Security Analysis

SWC-111 | USE OF THE "THROW" KEYWORD IS DEPRECATED.
LINE 88

low SEVERITY
"throw" is disallowed as of Solidity version 0.5.0. Use one of "revert()", "require()" or "assert()" instead

Source File
- FB.sol

Locations

87 if (_to == 0x0) throw; // Prevent transfer to 0x0

address. Use burn() instead

88 if (_value <= 0) throw;

89 if (balanceOf[msg.sender] < _value) throw; // Check if the sender has

enough

90 if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows

91 balanceOf[msg.sender] = SafeMath.safeSub(balanceOf[msg.sender],

_value); // Subtract from the sender

92

FBcoin.live Coin | Security Analysis

SWC-111 | USE OF THE "THROW" KEYWORD IS DEPRECATED.
LINE 89

low SEVERITY
"throw" is disallowed as of Solidity version 0.5.0. Use one of "revert()", "require()" or "assert()" instead

Source File
- FB.sol

Locations

88 if (_value <= 0) throw;

89 if (balanceOf[msg.sender] < _value) throw; // Check if the sender has

enough

90 if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows

91 balanceOf[msg.sender] = SafeMath.safeSub(balanceOf[msg.sender],

_value); // Subtract from the sender

92 balanceOf[_to] = SafeMath.safeAdd(balanceOf[_to],

_value); // Add the same to the recipient

93

FBcoin.live Coin | Security Analysis

SWC-111 | USE OF THE "THROW" KEYWORD IS DEPRECATED.
LINE 90

low SEVERITY
"throw" is disallowed as of Solidity version 0.5.0. Use one of "revert()", "require()" or "assert()" instead

Source File
- FB.sol

Locations

89 if (balanceOf[msg.sender] < _value) throw; // Check if the sender has

enough

90 if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows

91 balanceOf[msg.sender] = SafeMath.safeSub(balanceOf[msg.sender],

_value); // Subtract from the sender

92 balanceOf[_to] = SafeMath.safeAdd(balanceOf[_to],

_value); // Add the same to the recipient

93 Transfer(msg.sender, _to, _value); // Notify anyone listening that

this transfer took place

94

FBcoin.live Coin | Security Analysis

SWC-111 | USE OF THE "THROW" KEYWORD IS DEPRECATED.
LINE 99

low SEVERITY
"throw" is disallowed as of Solidity version 0.5.0. Use one of "revert()", "require()" or "assert()" instead

Source File
- FB.sol

Locations

98 returns (bool success) {

99 if (_value <= 0) throw;

100 allowance[msg.sender][_spender] = _value;

101 return true;

102 }

103

FBcoin.live Coin | Security Analysis

SWC-111 | USE OF THE "THROW" KEYWORD IS DEPRECATED.
LINE 107

low SEVERITY
"throw" is disallowed as of Solidity version 0.5.0. Use one of "revert()", "require()" or "assert()" instead

Source File
- FB.sol

Locations

106 function transferFrom(address _from, address _to, uint256 _value) returns (bool

success) {

107 if (_to == 0x0) throw; // Prevent transfer to 0x0

address. Use burn() instead

108 if (_value <= 0) throw;

109 if (balanceOf[_from] < _value) throw; // Check if the sender has

enough

110 if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows

111

FBcoin.live Coin | Security Analysis

SWC-111 | USE OF THE "THROW" KEYWORD IS DEPRECATED.
LINE 108

low SEVERITY
"throw" is disallowed as of Solidity version 0.5.0. Use one of "revert()", "require()" or "assert()" instead

Source File
- FB.sol

Locations

107 if (_to == 0x0) throw; // Prevent transfer to 0x0

address. Use burn() instead

108 if (_value <= 0) throw;

109 if (balanceOf[_from] < _value) throw; // Check if the sender has

enough

110 if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows

111 if (_value > allowance[_from][msg.sender]) throw; // Check allowance

112

FBcoin.live Coin | Security Analysis

SWC-111 | USE OF THE "THROW" KEYWORD IS DEPRECATED.
LINE 109

low SEVERITY
"throw" is disallowed as of Solidity version 0.5.0. Use one of "revert()", "require()" or "assert()" instead

Source File
- FB.sol

Locations

108 if (_value <= 0) throw;

109 if (balanceOf[_from] < _value) throw; // Check if the sender has

enough

110 if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows

111 if (_value > allowance[_from][msg.sender]) throw; // Check allowance

112 balanceOf[_from] = SafeMath.safeSub(balanceOf[_from],

_value); // Subtract from the sender

113

FBcoin.live Coin | Security Analysis

SWC-111 | USE OF THE "THROW" KEYWORD IS DEPRECATED.
LINE 110

low SEVERITY
"throw" is disallowed as of Solidity version 0.5.0. Use one of "revert()", "require()" or "assert()" instead

Source File
- FB.sol

Locations

109 if (balanceOf[_from] < _value) throw; // Check if the sender has

enough

110 if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows

111 if (_value > allowance[_from][msg.sender]) throw; // Check allowance

112 balanceOf[_from] = SafeMath.safeSub(balanceOf[_from],

_value); // Subtract from the sender

113 balanceOf[_to] = SafeMath.safeAdd(balanceOf[_to],

_value); // Add the same to the recipient

114

FBcoin.live Coin | Security Analysis

SWC-111 | USE OF THE "THROW" KEYWORD IS DEPRECATED.
LINE 111

low SEVERITY
"throw" is disallowed as of Solidity version 0.5.0. Use one of "revert()", "require()" or "assert()" instead

Source File
- FB.sol

Locations

110 if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows

111 if (_value > allowance[_from][msg.sender]) throw; // Check allowance

112 balanceOf[_from] = SafeMath.safeSub(balanceOf[_from],

_value); // Subtract from the sender

113 balanceOf[_to] = SafeMath.safeAdd(balanceOf[_to],

_value); // Add the same to the recipient

114 allowance[_from][msg.sender] = SafeMath.safeSub(allowance[_from][msg.sender],

_value);

115

FBcoin.live Coin | Security Analysis

SWC-111 | USE OF THE "THROW" KEYWORD IS DEPRECATED.
LINE 120

low SEVERITY
"throw" is disallowed as of Solidity version 0.5.0. Use one of "revert()", "require()" or "assert()" instead

Source File
- FB.sol

Locations

119 function burn(uint256 _value) returns (bool success) {

120 if (balanceOf[msg.sender] < _value) throw; // Check if the sender has

enough

121 if (_value <= 0) throw;

122 balanceOf[msg.sender] = SafeMath.safeSub(balanceOf[msg.sender],

_value); // Subtract from the sender

123 totalSupply = SafeMath.safeSub(totalSupply,_value);

// Updates totalSupply

124

FBcoin.live Coin | Security Analysis

SWC-111 | USE OF THE "THROW" KEYWORD IS DEPRECATED.
LINE 121

low SEVERITY
"throw" is disallowed as of Solidity version 0.5.0. Use one of "revert()", "require()" or "assert()" instead

Source File
- FB.sol

Locations

120 if (balanceOf[msg.sender] < _value) throw; // Check if the sender has

enough

121 if (_value <= 0) throw;

122 balanceOf[msg.sender] = SafeMath.safeSub(balanceOf[msg.sender],

_value); // Subtract from the sender

123 totalSupply = SafeMath.safeSub(totalSupply,_value);

// Updates totalSupply

124 Burn(msg.sender, _value);

125

FBcoin.live Coin | Security Analysis

SWC-111 | USE OF THE "THROW" KEYWORD IS DEPRECATED.
LINE 129

low SEVERITY
"throw" is disallowed as of Solidity version 0.5.0. Use one of "revert()", "require()" or "assert()" instead

Source File
- FB.sol

Locations

128 function freeze(uint256 _value) returns (bool success) {

129 if (balanceOf[msg.sender] < _value) throw; // Check if the sender has

enough

130 if (_value <= 0) throw;

131 balanceOf[msg.sender] = SafeMath.safeSub(balanceOf[msg.sender],

_value); // Subtract from the sender

132 freezeOf[msg.sender] = SafeMath.safeAdd(freezeOf[msg.sender],

_value); // Updates totalSupply

133

FBcoin.live Coin | Security Analysis

SWC-111 | USE OF THE "THROW" KEYWORD IS DEPRECATED.
LINE 130

low SEVERITY
"throw" is disallowed as of Solidity version 0.5.0. Use one of "revert()", "require()" or "assert()" instead

Source File
- FB.sol

Locations

129 if (balanceOf[msg.sender] < _value) throw; // Check if the sender has

enough

130 if (_value <= 0) throw;

131 balanceOf[msg.sender] = SafeMath.safeSub(balanceOf[msg.sender],

_value); // Subtract from the sender

132 freezeOf[msg.sender] = SafeMath.safeAdd(freezeOf[msg.sender],

_value); // Updates totalSupply

133 Freeze(msg.sender, _value);

134

FBcoin.live Coin | Security Analysis

SWC-111 | USE OF THE "THROW" KEYWORD IS DEPRECATED.
LINE 138

low SEVERITY
"throw" is disallowed as of Solidity version 0.5.0. Use one of "revert()", "require()" or "assert()" instead

Source File
- FB.sol

Locations

137 function unfreeze(uint256 _value) returns (bool success) {

138 if (freezeOf[msg.sender] < _value) throw; // Check if the sender has

enough

139 if (_value <= 0) throw;

140 freezeOf[msg.sender] = SafeMath.safeSub(freezeOf[msg.sender],

_value); // Subtract from the sender

141 balanceOf[msg.sender] = SafeMath.safeAdd(balanceOf[msg.sender], _value);

142

FBcoin.live Coin | Security Analysis

SWC-111 | USE OF THE "THROW" KEYWORD IS DEPRECATED.
LINE 139

low SEVERITY
"throw" is disallowed as of Solidity version 0.5.0. Use one of "revert()", "require()" or "assert()" instead

Source File
- FB.sol

Locations

138 if (freezeOf[msg.sender] < _value) throw; // Check if the sender has

enough

139 if (_value <= 0) throw;

140 freezeOf[msg.sender] = SafeMath.safeSub(freezeOf[msg.sender],

_value); // Subtract from the sender

141 balanceOf[msg.sender] = SafeMath.safeAdd(balanceOf[msg.sender], _value);

142 Unfreeze(msg.sender, _value);

143

FBcoin.live Coin | Security Analysis

SWC-111 | USE OF THE "THROW" KEYWORD IS DEPRECATED.
LINE 148

low SEVERITY
"throw" is disallowed as of Solidity version 0.5.0. Use one of "revert()", "require()" or "assert()" instead

Source File
- FB.sol

Locations

147 function withdrawEther(uint256 amount) {

148 if(msg.sender != owner)throw;

149 owner.transfer(amount);

150 }

151

152

FBcoin.live Coin | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

FBcoin.live Coin | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

