
LaunchVerse

Smart Contract
Audit Report

04 May 2022

LaunchVerse | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

LaunchVerse | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

LaunchVerse XLV BSC

| Addresses

Contract address 0x2304AE9aF71a5AE1b92f0091aC3cafF105C67766

Contract deployer address 0x7b7943394B172Be0Af3961E01c33AB4bcF195d77

| Project Website

https://launchverse.space/

| Codebase

https://bscscan.com/address/0x2304AE9aF71a5AE1b92f0091aC3cafF105C67766#code

https://launchverse.space/
https://bscscan.com/address/0x2304AE9aF71a5AE1b92f0091aC3cafF105C67766#code

LaunchVerse | Security Analysis

SUMMARY

Launchverse is a Data Aggregator - a Crypto Investing Platform. Web3 investing solutions with multi earning
ways. XLV is the first cryptocurrency that reflects promising tokens at their IDO stages. Hold XLV & Earn many
other tokens from best performing Launchpads. Unique multiplied version of passive income. Launchverse has
Data Aggregation, NFT Exhibition, Staking Seed Pad, and Dapps Ready. Launchverse is no private sale and no
unlocked token. Launchverse also has CMC listed, CG fast track, LV tracking tool, huge marketing,
partnerships, and CEX listing.

| Contract Summary

Documentation Quality

LaunchVerse provides a document with a good standard of solidity base code.

The technical description is provided clearly and structured.

Code Quality

The Overall quality of the basecode is GOOD with only 2 low-risk issues

Standart solidity basecode and rules are already followed with LaunchVerse Project .

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | Arithmetic operation Issues discovered on lines 61, 79, 98, 99, 116, 132, 147, 161, 175, 189,
205, 228, 255, 281, 294, 298, 310, 317, 326, 754, 755, 755, 771, 999, 1001, 1130, 1211, 1001.
SWC-103 | A floating pragma is set on lines 6.
SWC-108 | State variable visibility is not set on lines 776. It is best practice to set the visibility of state
variables explicitly. The default visibility for "protections" is internal. Other possible visibility settings are
public and private.
SWC-110 | Out of bounds array access on lines 1000, 1001, 1132, 1133, 1135, 1136, 1301, 1302.

LaunchVerse | Security Analysis

CONCLUSION

We have audited the LaunchVerse Coin which has been released to discover issues and identify potential
security vulnerabilities in LaunchVerseProject. This process is used to find bugs, technical issues, and security
loopholes that find some common issues in the code.

The security audit report produced satisfactory results with a low-risk issue on the contract project.

The most common issue found in writing code on contracts that do not pose a big risk, writing on contracts is
close to the standard of writing contracts in general. Some of the low issues that were found were asserted
violation and a floating pragma set.

LaunchVerse | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Check-Effect
Interaction

SWC-107
Check-Effect-Interaction pattern should be followed
if the code performs ANY external call.

PASS

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Caller

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

LaunchVerse | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to inherit
contracts from more /general/ to more /specific/.

PASS

LaunchVerse | Security Analysis

SMART CONTRACT ANALYSIS

Started Tue May 3 2023 07:31:58 GMT+0000 (Coordinated Universal Time)

Finished Wed May 4 2023 08:31:58 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File XLV.Sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

LaunchVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 61

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- XLV.sol

Locations

60 unchecked {

61 uint256 c = a + b;

62 if (c < a) return (false, 0);

63 return (true, c);

64 }

LaunchVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 79

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- XLV.sol

Locations

78 if (b > a) return (false, 0);

79 return (true, a - b);

80 }

81 }

82

LaunchVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 98

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- XLV.sol

Locations

97 if (a == 0) return (true, 0);

98 uint256 c = a * b;

99 if (c / a != b) return (false, 0);

100 return (true, c);

101 }

LaunchVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 99

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- XLV.sol

Locations

98 uint256 c = a * b;

99 if (c / a != b) return (false, 0);

100 return (true, c);

101 }

102 }

LaunchVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 116

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- XLV.sol

Locations

115 if (b == 0) return (false, 0);

116 return (true, a / b);

117 }

118 }

119

LaunchVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 132

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- XLV.sol

Locations

131 if (b == 0) return (false, 0);

132 return (true, a % b);

133 }

134 }

135

LaunchVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 147

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- XLV.sol

Locations

146 function add(uint256 a, uint256 b) internal pure returns (uint256) {

147 return a + b;

148 }

149

150 /**

LaunchVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 161

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- XLV.sol

Locations

160 function sub(uint256 a, uint256 b) internal pure returns (uint256) {

161 return a - b;

162 }

163

164 /**

LaunchVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 175

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- XLV.sol

Locations

174 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

175 return a * b;

176 }

177

178 /**

LaunchVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 189

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- XLV.sol

Locations

188 function div(uint256 a, uint256 b) internal pure returns (uint256) {

189 return a / b;

190 }

191

192 /**

LaunchVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 205

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- XLV.sol

Locations

204 function mod(uint256 a, uint256 b) internal pure returns (uint256) {

205 return a % b;

206 }

207

208 /**

LaunchVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 228

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- XLV.sol

Locations

227 require(b <= a, errorMessage);

228 return a - b;

229 }

230 }

231

LaunchVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 255

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- XLV.sol

Locations

254 require(b > 0, errorMessage);

255 return a / b;

256 }

257 }

258

LaunchVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 281

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- XLV.sol

Locations

280 require(b > 0, errorMessage);

281 return a % b;

282 }

283 }

284 }

LaunchVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 294

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- XLV.sol

Locations

293 function mul(int256 a, int256 b) internal pure returns (int256) {

294 int256 c = a * b;

295

296 // Detect overflow when multiplying MIN_INT256 with -1

297 require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

LaunchVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 298

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- XLV.sol

Locations

297 require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

298 require((b == 0) || (c / b == a));

299 return c;

300 }

301

LaunchVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 310

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- XLV.sol

Locations

309 // Solidity already throws when dividing by 0.

310 return a / b;

311 }

312

313 /**

LaunchVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 317

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- XLV.sol

Locations

316 function sub(int256 a, int256 b) internal pure returns (int256) {

317 int256 c = a - b;

318 require((b >= 0 && c <= a) || (b < 0 && c > a));

319 return c;

320 }

LaunchVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 326

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- XLV.sol

Locations

325 function add(int256 a, int256 b) internal pure returns (int256) {

326 int256 c = a + b;

327 require((b >= 0 && c >= a) || (b < 0 && c < a));

328 return c;

329 }

LaunchVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 754

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- XLV.sol

Locations

753 uint256 private constant MAX = ~uint256(0);

754 uint256 private _tTotal = 1000 * 10**6 * 10**9;

755 uint256 private _rTotal = (MAX - (MAX % _tTotal));

756 uint256 private _tFeeTotal;

757

LaunchVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 755

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- XLV.sol

Locations

754 uint256 private _tTotal = 1000 * 10**6 * 10**9;

755 uint256 private _rTotal = (MAX - (MAX % _tTotal));

756 uint256 private _tFeeTotal;

757

758 string private _name = "LaunchVerse";

LaunchVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 755

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- XLV.sol

Locations

754 uint256 private _tTotal = 1000 * 10**6 * 10**9;

755 uint256 private _rTotal = (MAX - (MAX % _tTotal));

756 uint256 private _tFeeTotal;

757

758 string private _name = "LaunchVerse";

LaunchVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 771

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- XLV.sol

Locations

770 uint256 public _maxWalletToken = _tTotal.mul(2).div(100);

771 uint256 public _swapTokensAt = 100 * 10**5 * 10**9;

772

773 bool public tradeEnable = false;

774 // auto liquidity

LaunchVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 999

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- XLV.sol

Locations

998

999 for (uint256 i = 0; i < _excluded.length; i++) {

1000 if (_excluded[i] == account) {

1001 _excluded[i] = _excluded[_excluded.length - 1];

1002 _tOwned[account] = 0;

LaunchVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1001

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- XLV.sol

Locations

1000 if (_excluded[i] == account) {

1001 _excluded[i] = _excluded[_excluded.length - 1];

1002 _tOwned[account] = 0;

1003 _isExcluded[account] = false;

1004 _excluded.pop();

LaunchVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1130

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- XLV.sol

Locations

1129 uint256 tSupply = _tTotal;

1130 for (uint256 i = 0; i < _excluded.length; i++) {

1131 if (

1132 _rOwned[_excluded[i]] > rSupply ||

1133 _tOwned[_excluded[i]] > tSupply

LaunchVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1211

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- XLV.sol

Locations

1210 require(

1211 reciverTokenBalance + amount <= _maxWalletToken,

1212 "Max Wallet Token Exceeded."

1213);

1214 }

LaunchVerse | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1001

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- XLV.sol

Locations

1000 if (_excluded[i] == account) {

1001 _excluded[i] = _excluded[_excluded.length - 1];

1002 _tOwned[account] = 0;

1003 _isExcluded[account] = false;

1004 _excluded.pop();

LaunchVerse | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 6

low SEVERITY
The current pragma Solidity directive is ""^0.8.4"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- XLV.sol

Locations

5 // SPDX-License-Identifier: Unlicensed

6 pragma solidity ^0.8.4;

7

8 abstract contract Context {

9 function _msgSender() internal view virtual returns (address) {

LaunchVerse | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 776

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- XLV.sol

Locations

775 bool public _swapAndLiquifyEnabled = true;

776 bool _inSwapAndLiquify;

777 IUniswapV2Router02 public _uniswapV2Router;

778 address public _uniswapV2Pair;

779 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

LaunchVerse | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1000

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- XLV.sol

Locations

999 for (uint256 i = 0; i < _excluded.length; i++) {

1000 if (_excluded[i] == account) {

1001 _excluded[i] = _excluded[_excluded.length - 1];

1002 _tOwned[account] = 0;

1003 _isExcluded[account] = false;

LaunchVerse | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1001

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- XLV.sol

Locations

1000 if (_excluded[i] == account) {

1001 _excluded[i] = _excluded[_excluded.length - 1];

1002 _tOwned[account] = 0;

1003 _isExcluded[account] = false;

1004 _excluded.pop();

LaunchVerse | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1132

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- XLV.sol

Locations

1131 if (

1132 _rOwned[_excluded[i]] > rSupply ||

1133 _tOwned[_excluded[i]] > tSupply

1134) return (_rTotal, _tTotal);

1135 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

LaunchVerse | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1133

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- XLV.sol

Locations

1132 _rOwned[_excluded[i]] > rSupply ||

1133 _tOwned[_excluded[i]] > tSupply

1134) return (_rTotal, _tTotal);

1135 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1136 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

LaunchVerse | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1135

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- XLV.sol

Locations

1134) return (_rTotal, _tTotal);

1135 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1136 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1137 }

1138 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

LaunchVerse | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1136

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- XLV.sol

Locations

1135 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1136 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1137 }

1138 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

1139 return (rSupply, tSupply);

LaunchVerse | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1301

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- XLV.sol

Locations

1300 address[] memory path = new address[](2);

1301 path[0] = address(this);

1302 path[1] = _uniswapV2Router.WETH();

1303

1304 _approve(address(this), address(_uniswapV2Router), tokenAmount);

LaunchVerse | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1302

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- XLV.sol

Locations

1301 path[0] = address(this);

1302 path[1] = _uniswapV2Router.WETH();

1303

1304 _approve(address(this), address(_uniswapV2Router), tokenAmount);

1305

LaunchVerse | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

LaunchVerse | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

