oty
‘Dph’*
v

DaDuGou

Smart Contract
Audit Report

@ SYSFIXED 19 Jan 2023

£ SYSFIXED

TABLE OF CONTENTS

| Audited Details

- Audited Project
- Blockchain
- Addresses

- Project Website
- Codebase

| Summary

- Contract Summary
- Audit Findings Summary
- Vulnerabilities Summary

| Conclusion

| Audit Results

| Smart Contract Analysis

- Detected Vulnerabilities

| Disclaimer

| About Us

DaDuGou | Security Analysis

£ SYSFIXED

AUDITED DETAILS

| Audited Project

DaDuGou | Security Analysis

Project name

Token ticker

Blockchain

DaDuGou

DDG

Binance Smart Chain

| Addresses

Contract address

0x9507dc11CE446A1B2C92a197fbca593728F4c0D5

Contract deployer address

0x66394e5a48eFC070736087FD8AbBd35917E5fF3b

| Project Website

https://t.me/dadugou

| Codebase

https://bscscan.com/address/0x9507dc11CE446A1B2C92a197fbca593728F4c0D5#code

https://t.me/dadugou
https://bscscan.com/address/0x9507dc11CE446A1B2C92a197fbca593728F4c0D5#code

@S‘I"‘SH}I{ED DaDuGou | Security Analysis

SUMMARY

DaDuGou (Big Gambling Dog) works in a daze with a 30-year mortgage on his back. We fantasize about
changing the status quo by speculating in coins, but in reality, we frequently lose our positions. We are called
"gambling dogs" by our family and friends. There's nothing wrong with being gambling dogs, we just want a
better life. Today, we launch this project and call on all "Gambling Dogs" to participate together to create a big
golden dog that belongs to "Gambling Dogs" Dare to bet today, and drive a BMW tomorrow.

| Contract Summary

Documentation Quality
DaDuGou provides a very good documentation with standard of solidity base code.
e The technical description is provided clearly and structured and also dont have any high risk issue.
Code Quality
The Overall quality of the basecode is standard.

e Standard solidity basecode and rules are already followed by DaDuGou with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

e SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 959.

e SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 213, 227, 242, 243, 256, 268, 283, 297, 311, 325, 341, 364, 387, 413, 927,927,997, 997, 1006, 1006,
1018, 1202, 1204, 1244, 1244, 1255, 1255, 1263, 1263, 1270, 1374, 1408, 1416, 1425 and 1204.

e SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 1203, 1204, 1204, 1376, 1377, 1379, 1380, 1526 and 1527.

@ SYSFIXED DaDuGou | Security Analysis

CONCLUSION

We have audited the DaDuGou project released on January 2023 to discover issues and identify potential
security vulnerabilities in DaDuGou Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the DaDuGou smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a state variable visibility is not set, and out of bounds array access which the index access
expression can cause an exception in case of the use of an invalid array index value.

@‘S\FSFHEU DaDuGou | Security Analysis

AUDIT RESULT

Article Category Description Result
Functions and state variables visibility should be
- SWC-100 - . - ISSUE
Default Visibility set explicitly. Visibility levels should be specified
SWC-108 . FOUND
consciously.
Integer Overflow SRk T If unchecked math is used, all math operations ISSUE
and Underflow should be safe from overflows and underflows. FOUND
Outdated Compiler It is recommended to use a recent version of the
. SWC-102 L . PASS
Version Solidity compiler.
Contracts should be deployed with the same
Floating Pragma SWC-103 compiler version and flags that they have been PASS
tested thoroughly.
Unchecked Call The return value of a message call should be
SWC-104 PASS
Return Value checked.
Unprotected Ether Due to missing or insufficient access controls,
. SWC-105 . i , PASS
Withdrawal malicious parties can withdraw from the contract.
SELFDESTRUCT The contract should not be self-destructible while it
. SWC-106 . PASS
Instruction has funds belonging to users.

Check effect interaction pattern should be followed
Reentrancy SWC-107)) PASS
if the code performs recursive call.

Uninitialized Uninitialized local storage variables can point to
. SWC-109 i . PASS
Storage Pointer unexpected storage locations in the contract.
L SWC-110 Properly functioning code should never reach a ISSUE
Assert Violation N
SWC-123 failing assert statement. FOUND
Deprecated Solidity o)
. SWC-111 Deprecated built-in functions should never be used. PASS
Functions
Delegate call to Delegatecalls should only be allowed to trusted
SWC-112 PASS

Untrusted Callee addresses.

£ SYSFIXED

DoS (Denial of
Service)

Race Conditions

Authorization
through tx.origin

Block values as a
proxy for time

Signature Unique
ID

Incorrect
Constructor Name

Shadowing State
Variable

Weak Sources of
Randomness

Write to Arbitrary
Storage Location

Incorrect
Inheritance Order

Insufficient Gas
Griefing

Arbitrary Jump
Function

SWC-113
SWC-128

SWC-114

SWC-115

SWC-116

SWC-117
SWC-121
SWC-122

SWC-118

SWC-119

SWC-120

SWC-124

SWC-125

SWC-126

SWC-127

DaDuGou | Security Analysis

Execution of the code should never be blocked by a specific
contract state unless required.

Race Conditions and Transactions Order Dependency
should not be possible.

tx.origin should not be used for authorization.

Block numbers should not be used for time calculations.

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

Constructors are special functions that are called only once
during the contract creation.

State variables should not be shadowed.

Random values should never be generated from Chain
Attributes or be predictable.

The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

£ SYSFIXED

Typographical
Error

Override control
character

Unused variables

Unexpected Ether
balance

Hash Collisions
Variable

Hardcoded gas
amount

Unencrypted
Private Data

SWC-129

SWC-130

SWC-131
SWC-135

SWC-132

SWC-133

SWC-134

SWC-136

DaDuGou | Security Analysis

A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

Contracts can behave erroneously when they strictly assume
a specific Ether balance.

Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

The transfer() and send() functions forward a fixed amount
of 2300 gas.

It is a common misconception that private type variables
cannot be read.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

@sﬁrmm DaDuGou | Security Analysis

SMART CONTRACT ANALYSIS

Started Wednesday Jan 18 2023 22:31:32 GMT+0000 (Coordinated Universal Time)
Finished Thursday Jan 19 2023 19:47:21 GMT+0000 (Coordinated Universal Time)
Mode Standard

Main Source File LiquidityGeneratorToken.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

£ SYSFIXED

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

£ SYSFIXED

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 213

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

212 unchecked {

213 uint256 ¢ = a + b;

214 if (c <a) return (false, 0);
215 return (true, c);

216 }

217

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 227

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

226 if (b >a) return (false, 0);
227 return (true, a - b);

228 }
229}
230

231

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 242

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

241 if (a==0) return (true, 0);

242 uint256 ¢ = a * b;

243 if (c/ a'!'=Db) return (false, 0);
244 return (true, c);

245 }

246

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 243

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

242 uint256 ¢ = a * b;

243 if (c/ al=Db) return (false, 0);
244 return (true, c);

245 }

246 }

247

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 256

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

255 if (b ==20) return (false, 0);
256 return (true, a / b);

257 }
258}
259

260

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 268

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

267 if (b ==20) return (false, 0);
268 return (true, a %b);

269 }
270}
271

272

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 283

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

282 function add(uint256 a, uint256 b) internal pure returns (uint256) {
283 return a + b;

284 }
285
286 [**

287

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 297

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

296 function sub(uint256 a, uint256 b) internal pure returns (uint256) {
297 return a - b;

298 }
299
300 /**

301

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 311

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

310 function mul (uint256 a, uint256 b) internal pure returns (uint256) {
311 return a * b;

312}
313
314 [**

315

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 325

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

324 function div(uint256 a, uint256 b) internal pure returns (uint256) {
325 return a / b;

326}
327
328 [**

329

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 341

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

340 function nod(uint256 a, uint256 b) internal pure returns (uint256) {
341 return a % b;

342}
343
344 [**

345

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 364

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

363 requi re(b <= a, errorMessage);
364 return a - b;

365 }
366}
367

368

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 387

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

386 requi re(b > 0, errorMessage);
387 return a / b;

388 }
389 }
390

391

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 413

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

412 requi re(b > 0, errorMessage);
413 return a % b;

414}
415 }
416}

417

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 927

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations
926
927 ui nt 256 public constant MAX _FEE = 10**4 / 4,
928

929 mappi ng(address => ui nt256) private _rOwned;
930 nmappi ng(address => ui nt 256) private _tOaned;
931

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 927

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations
926
927 ui nt 256 public constant MAX _FEE = 10**4 / 4,
928

929 mappi ng(address => ui nt256) private _rOwned;
930 nmappi ng(address => ui nt 256) private _tOaned;
931

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED

LINE 997

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

996 require(

997 t axFeeBps_ + |iquidityFeeBps_ + charityFeeBps_ <= MAX FEE,
998 "Total fee is over 25%

999);

1000

1001

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED

LINE 997

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

996 require(

997 t axFeeBps_ + |iquidityFeeBps_ + charityFeeBps_ <= MAX FEE,
998 "Total fee is over 25%

999);

1000

1001

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1006

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1005 _tTot al
1006 _rTot al

tot al Supply_;
(MAX - (MAX % _tTotal));

1007
1008 _taxFee = taxFeeBps_;
1009 _previ ousTaxFee = _taxFee;

1010

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 1006

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1005 _tTot al
1006 _rTot al

tot al Supply_;
(MAX - (MAX % _tTotal));

1007
1008 _taxFee = taxFeeBps_;
1009 _previ ousTaxFee = _taxFee;

1010

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1018

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1017

1018 numrokensSel | ToAddToLi quidity = total Supply_.div(10**3); // 0.1%
1019

1020 swapAndLi qui f yEnabl ed = true;

1021

1022

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1202

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1201 requi re(_i sexcl uded[account], "Account is already excluded");
1202 for (uint256 i = 0; i < _excluded.length; i++) {

1203 if (_excluded[i] == account) {

1204 _excluded[i] = _excluded[_excluded.length - 1];

1205 _tOwned[account] = 0;

1206

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED

LINE 1204

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations
1203 if (_excluded[i] == account) {
1204 _excluded[i] = _excluded[_excluded.length - 1];
1205 _t Omed[account] = 0;
1206 _i sExcl uded[account] = fal se;

1207 _excl uded. pop();
1208

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1244

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1243 require(

1244 _taxFee + _liquidityFee + _charityFee <= MAX_FEE
1245 "Total fee is over 25%

1246);

1247 }

1248

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1244

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1243 require(

1244 _taxFee + _liquidityFee + _charityFee <= MAX_FEE
1245 "Total fee is over 25%

1246);

1247 }

1248

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1255

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1254 require(

1255 _taxFee + _liquidityFee + _charityFee <= MAX_FEE
1256 "Total fee is over 25%

1257);

1258 }

1259

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1255

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1254 require(

1255 _taxFee + _liquidityFee + _charityFee <= MAX_FEE
1256 "Total fee is over 25%

1257);

1258 }

1259

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1263

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1262 require(

1263 _taxFee + _liquidityFee + _charityFee <= MAX_FEE
1264 "Total fee is over 25%

1265);

1266 }

1267

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1263

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1262 require(

1263 _taxFee + _liquidityFee + _charityFee <= MAX_FEE
1264 "Total fee is over 25%

1265);

1266 }

1267

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1270

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1269 require(

1270 _anount >= total Suppl y().nul (5).div(10**4),

1271 "Swapback ampount should be at |east 0.05% of total supply”
1272);

1273 nunTokensSel | ToAddToLi quidity = _anount;

1274

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1374

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1373 ui nt 256 tSupply = _tTotal;

1374 for (uint256 i = 0; i < _excluded.length; i++) {
1375 if (

1376 _rOwned[_excluded[i]] > rSupply |

1377 _tOwned[_excluded[i]] > tSupply

1378

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1408

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1407 function cal cul at eTaxFee(ui nt256 _anount) private view returns (uint256) {
1408 return _amount. mul (_t axFee). di v(10**4);

1409 }

1410

1411 function cal cul at eLi qui di t yFee(ui nt 256 _anount)

1412

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1416

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations
1415 {
1416 return _amount. mul (_liquidityFee). div(10**4)
1417 }
1418

1419 function cal cul ateCharityFee(uint256 _anount)
1420

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1425

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1424 if (_charityAddress == address(0)) return O;
1425 return _amount. mul (_charityFee).div(10**4);
1426 }

1427

1428 function renoveAl |l Fee() private {

1429

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1204

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations
1203 if (_excluded[i] == account) {
1204 _excluded[i] = _excluded[_excluded.length - 1];
1205 _t Omed[account] = 0;
1206 _i sExcl uded[account] = fal se;
1207 _excl uded. pop();
1208

@S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 959

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- LiquidityGeneratorToken.sol

Locations

958

959 bool i nSwapAndLi qui fy;

960 bool public swapAndLi qui f yEnabl ed;

961

962 ui nt 256 private nunlokensSel | ToAddToLi qui dity;
963

@S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1203

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LiquidityGeneratorToken.sol

Locations
1202 for (uint256 i = 0; i < _excluded.length; i++) {
1203 if (_excluded[i] == account) {
1204 _excluded[i] = _excluded[_excluded.length - 1];
1205 _t Omed[account] = 0;
1206 _i sExcl uded[account] = fal se;
1207

@S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1204

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LiquidityGeneratorToken.sol

Locations
1203 if (_excluded[i] == account) {
1204 _excluded[i] = _excluded[_excluded.length - 1];
1205 _t Omed[account] = 0;
1206 _i sExcl uded[account] = fal se;
1207 _excl uded. pop();
1208

@S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1204

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LiquidityGeneratorToken.sol

Locations
1203 if (_excluded[i] == account) {
1204 _excluded[i] = _excluded[_excluded.length - 1];
1205 _t Omed[account] = 0;
1206 _i sExcl uded[account] = fal se;
1207 _excl uded. pop();
1208

@S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1376

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LiquidityGeneratorToken.sol

Locations

1375 if (

1376 _rOmed[_excluded[i]] > rSupply ||

1377 _tOmed[_excluded[i]] > tSupply

1378) return (_rTotal, _tTotal);

1379 r Supply = rSupply.sub(_rOmed[_excluded[i]]);
1380

@S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1377

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LiquidityGeneratorToken.sol

Locations

1376 _rOmed[_excluded[i]] > rSupply ||

1377 _tOwned[_excluded[i]] > tSupply

1378) return (_rTotal, _tTotal);

1379 rSupply = rSupply.sub(_rOaned[_excluded[i]]);
1380 t Supply = tSupply. sub(_t Owmed[_excluded[i]]);
1381

@S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1379

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LiquidityGeneratorToken.sol

Locations

1378) return (_rTotal, _tTotal);

1379 r Suppl y r Suppl y. sub(_r Omed[_excluded[i]]);

1380 t Suppl y t Suppl y. sub(_t Omed[_excluded[i]]);

1381 }

1382 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);
1383

@S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1380

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LiquidityGeneratorToken.sol

Locations

1379 r Suppl y
1380 t Suppl y
1381 }

1382 if (rSupply < rTotal.div(_tTotal)) return (_rTotal, _tTotal);
1383 return (rSupply, tSupply);

1384

r Suppl y. sub(_r Omed[_excluded[i]]);
t Suppl y. sub(_t Owned[_excl uded[i]]);

@S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1526

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LiquidityGeneratorToken.sol

Locations

1525 address[] nenory path = new address[](2);

1526 pat h{ 0] address(this);

1527 pat h[1] uni swapV2Rout er . WETH() ;

1528

1529 _approve(address(this), address(uni swapV2Router), tokenAnount);
1530

@S‘I"‘SH}I{ED DaDuGou | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1527

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LiquidityGeneratorToken.sol

Locations

1526 pat h[0]
1527 pat h[1]
1528

1529 _approve(address(this), address(uni swapV2Router), tokenAmount);
1530

1531

address(this);
uni swapV2Rout er . WETH() ;

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below - please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

@‘S‘I"‘SH}I{ED DaDuGou | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

