
DaDuGou

Smart Contract
Audit Report

19 Jan 2023

DaDuGou | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

DaDuGou | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

DaDuGou DDG Binance Smart Chain

| Addresses

Contract address 0x9507dc11CE446A1B2C92a197fbca593728F4c0D5

Contract deployer address 0x66394e5a48eFC070736087FD8AbBd35917E5fF3b

| Project Website

https://t.me/dadugou

| Codebase

https://bscscan.com/address/0x9507dc11CE446A1B2C92a197fbca593728F4c0D5#code

https://t.me/dadugou
https://bscscan.com/address/0x9507dc11CE446A1B2C92a197fbca593728F4c0D5#code

DaDuGou | Security Analysis

SUMMARY

DaDuGou (Big Gambling Dog) works in a daze with a 30-year mortgage on his back. We fantasize about
changing the status quo by speculating in coins, but in reality, we frequently lose our positions. We are called
"gambling dogs" by our family and friends. There's nothing wrong with being gambling dogs, we just want a
better life. Today, we launch this project and call on all "Gambling Dogs" to participate together to create a big
golden dog that belongs to "Gambling Dogs" Dare to bet today, and drive a BMW tomorrow.

| Contract Summary

Documentation Quality

DaDuGou provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by DaDuGou with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 959.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 213, 227, 242, 243, 256, 268, 283, 297, 311, 325, 341, 364, 387, 413, 927, 927, 997, 997, 1006, 1006,
1018, 1202, 1204, 1244, 1244, 1255, 1255, 1263, 1263, 1270, 1374, 1408, 1416, 1425 and 1204.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 1203, 1204, 1204, 1376, 1377, 1379, 1380, 1526 and 1527.

DaDuGou | Security Analysis

CONCLUSION

We have audited the DaDuGou project released on January 2023 to discover issues and identify potential
security vulnerabilities in DaDuGou Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the DaDuGou smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a state variable visibility is not set, and out of bounds array access which the index access
expression can cause an exception in case of the use of an invalid array index value.

DaDuGou | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

PASS

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

DaDuGou | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

DaDuGou | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

DaDuGou | Security Analysis

SMART CONTRACT ANALYSIS

Started Wednesday Jan 18 2023 22:31:32 GMT+0000 (Coordinated Universal Time)

Finished Thursday Jan 19 2023 19:47:21 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File LiquidityGeneratorToken.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 213

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

212 unchecked {

213 uint256 c = a + b;

214 if (c < a) return (false, 0);

215 return (true, c);

216 }

217

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 227

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

226 if (b > a) return (false, 0);

227 return (true, a - b);

228 }

229 }

230

231

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 242

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

241 if (a == 0) return (true, 0);

242 uint256 c = a * b;

243 if (c / a != b) return (false, 0);

244 return (true, c);

245 }

246

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 243

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

242 uint256 c = a * b;

243 if (c / a != b) return (false, 0);

244 return (true, c);

245 }

246 }

247

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 256

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

255 if (b == 0) return (false, 0);

256 return (true, a / b);

257 }

258 }

259

260

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 268

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

267 if (b == 0) return (false, 0);

268 return (true, a % b);

269 }

270 }

271

272

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 283

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

282 function add(uint256 a, uint256 b) internal pure returns (uint256) {

283 return a + b;

284 }

285

286 /**

287

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 297

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

296 function sub(uint256 a, uint256 b) internal pure returns (uint256) {

297 return a - b;

298 }

299

300 /**

301

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 311

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

310 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

311 return a * b;

312 }

313

314 /**

315

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 325

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

324 function div(uint256 a, uint256 b) internal pure returns (uint256) {

325 return a / b;

326 }

327

328 /**

329

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 341

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

340 function mod(uint256 a, uint256 b) internal pure returns (uint256) {

341 return a % b;

342 }

343

344 /**

345

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 364

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

363 require(b <= a, errorMessage);

364 return a - b;

365 }

366 }

367

368

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 387

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

386 require(b > 0, errorMessage);

387 return a / b;

388 }

389 }

390

391

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 413

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

412 require(b > 0, errorMessage);

413 return a % b;

414 }

415 }

416 }

417

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 927

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

926

927 uint256 public constant MAX_FEE = 10**4 / 4;

928

929 mapping(address => uint256) private _rOwned;

930 mapping(address => uint256) private _tOwned;

931

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 927

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

926

927 uint256 public constant MAX_FEE = 10**4 / 4;

928

929 mapping(address => uint256) private _rOwned;

930 mapping(address => uint256) private _tOwned;

931

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 997

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

996 require(

997 taxFeeBps_ + liquidityFeeBps_ + charityFeeBps_ <= MAX_FEE,

998 "Total fee is over 25%"

999);

1000

1001

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 997

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

996 require(

997 taxFeeBps_ + liquidityFeeBps_ + charityFeeBps_ <= MAX_FEE,

998 "Total fee is over 25%"

999);

1000

1001

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1006

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1005 _tTotal = totalSupply_;

1006 _rTotal = (MAX - (MAX % _tTotal));

1007

1008 _taxFee = taxFeeBps_;

1009 _previousTaxFee = _taxFee;

1010

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 1006

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1005 _tTotal = totalSupply_;

1006 _rTotal = (MAX - (MAX % _tTotal));

1007

1008 _taxFee = taxFeeBps_;

1009 _previousTaxFee = _taxFee;

1010

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1018

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1017

1018 numTokensSellToAddToLiquidity = totalSupply_.div(10**3); // 0.1%

1019

1020 swapAndLiquifyEnabled = true;

1021

1022

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1202

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1201 require(_isExcluded[account], "Account is already excluded");

1202 for (uint256 i = 0; i < _excluded.length; i++) {

1203 if (_excluded[i] == account) {

1204 _excluded[i] = _excluded[_excluded.length - 1];

1205 _tOwned[account] = 0;

1206

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1204

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1203 if (_excluded[i] == account) {

1204 _excluded[i] = _excluded[_excluded.length - 1];

1205 _tOwned[account] = 0;

1206 _isExcluded[account] = false;

1207 _excluded.pop();

1208

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1244

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1243 require(

1244 _taxFee + _liquidityFee + _charityFee <= MAX_FEE,

1245 "Total fee is over 25%"

1246);

1247 }

1248

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1244

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1243 require(

1244 _taxFee + _liquidityFee + _charityFee <= MAX_FEE,

1245 "Total fee is over 25%"

1246);

1247 }

1248

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1255

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1254 require(

1255 _taxFee + _liquidityFee + _charityFee <= MAX_FEE,

1256 "Total fee is over 25%"

1257);

1258 }

1259

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1255

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1254 require(

1255 _taxFee + _liquidityFee + _charityFee <= MAX_FEE,

1256 "Total fee is over 25%"

1257);

1258 }

1259

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1263

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1262 require(

1263 _taxFee + _liquidityFee + _charityFee <= MAX_FEE,

1264 "Total fee is over 25%"

1265);

1266 }

1267

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1263

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1262 require(

1263 _taxFee + _liquidityFee + _charityFee <= MAX_FEE,

1264 "Total fee is over 25%"

1265);

1266 }

1267

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1270

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1269 require(

1270 _amount >= totalSupply().mul(5).div(10**4),

1271 "Swapback amount should be at least 0.05% of total supply"

1272);

1273 numTokensSellToAddToLiquidity = _amount;

1274

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1374

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1373 uint256 tSupply = _tTotal;

1374 for (uint256 i = 0; i < _excluded.length; i++) {

1375 if (

1376 _rOwned[_excluded[i]] > rSupply ||

1377 _tOwned[_excluded[i]] > tSupply

1378

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1408

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1407 function calculateTaxFee(uint256 _amount) private view returns (uint256) {

1408 return _amount.mul(_taxFee).div(10**4);

1409 }

1410

1411 function calculateLiquidityFee(uint256 _amount)

1412

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1416

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1415 {

1416 return _amount.mul(_liquidityFee).div(10**4);

1417 }

1418

1419 function calculateCharityFee(uint256 _amount)

1420

DaDuGou | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1425

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1424 if (_charityAddress == address(0)) return 0;

1425 return _amount.mul(_charityFee).div(10**4);

1426 }

1427

1428 function removeAllFee() private {

1429

DaDuGou | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1204

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1203 if (_excluded[i] == account) {

1204 _excluded[i] = _excluded[_excluded.length - 1];

1205 _tOwned[account] = 0;

1206 _isExcluded[account] = false;

1207 _excluded.pop();

1208

DaDuGou | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 959

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- LiquidityGeneratorToken.sol

Locations

958

959 bool inSwapAndLiquify;

960 bool public swapAndLiquifyEnabled;

961

962 uint256 private numTokensSellToAddToLiquidity;

963

DaDuGou | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1203

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LiquidityGeneratorToken.sol

Locations

1202 for (uint256 i = 0; i < _excluded.length; i++) {

1203 if (_excluded[i] == account) {

1204 _excluded[i] = _excluded[_excluded.length - 1];

1205 _tOwned[account] = 0;

1206 _isExcluded[account] = false;

1207

DaDuGou | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1204

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LiquidityGeneratorToken.sol

Locations

1203 if (_excluded[i] == account) {

1204 _excluded[i] = _excluded[_excluded.length - 1];

1205 _tOwned[account] = 0;

1206 _isExcluded[account] = false;

1207 _excluded.pop();

1208

DaDuGou | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1204

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LiquidityGeneratorToken.sol

Locations

1203 if (_excluded[i] == account) {

1204 _excluded[i] = _excluded[_excluded.length - 1];

1205 _tOwned[account] = 0;

1206 _isExcluded[account] = false;

1207 _excluded.pop();

1208

DaDuGou | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1376

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LiquidityGeneratorToken.sol

Locations

1375 if (

1376 _rOwned[_excluded[i]] > rSupply ||

1377 _tOwned[_excluded[i]] > tSupply

1378) return (_rTotal, _tTotal);

1379 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1380

DaDuGou | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1377

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LiquidityGeneratorToken.sol

Locations

1376 _rOwned[_excluded[i]] > rSupply ||

1377 _tOwned[_excluded[i]] > tSupply

1378) return (_rTotal, _tTotal);

1379 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1380 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1381

DaDuGou | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1379

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LiquidityGeneratorToken.sol

Locations

1378) return (_rTotal, _tTotal);

1379 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1380 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1381 }

1382 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

1383

DaDuGou | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1380

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LiquidityGeneratorToken.sol

Locations

1379 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1380 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1381 }

1382 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

1383 return (rSupply, tSupply);

1384

DaDuGou | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1526

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LiquidityGeneratorToken.sol

Locations

1525 address[] memory path = new address[](2);

1526 path[0] = address(this);

1527 path[1] = uniswapV2Router.WETH();

1528

1529 _approve(address(this), address(uniswapV2Router), tokenAmount);

1530

DaDuGou | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1527

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LiquidityGeneratorToken.sol

Locations

1526 path[0] = address(this);

1527 path[1] = uniswapV2Router.WETH();

1528

1529 _approve(address(this), address(uniswapV2Router), tokenAmount);

1530

1531

DaDuGou | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

DaDuGou | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

