LUBU

Smart Contract
Audit Report

@ SYSFIXED 27 Apr 2022

£ SYSFIXED

TABLE OF CONTENTS

| Audited Details

- Audited Project
- Blockchain
- Addresses

- Project Website
- Codebase

| Summary

- Contract Summary
- Audit Findings Summary
- Vulnerabilities Summary

| Conclusion

| Audit Results

| Smart Contract Analysis

- Detected Vulnerabilities

| Disclaimer

| About Us

LUBU | Security Analysis

£ SYSFIXED

AUDITED DETAILS

| Audited Project

LUBU | Security Analysis

Project name Token ticker Blockchain
LUBU LUBU Ethereum
| Addresses

Contract address

Ox5DE7821A653582B679A53dDEF982b1680e4E3003

Contract deployer address

0x285768dc96C89Ae006356583a513A86B2A421D58

| Project Website

https://lubutoken.com/

| Codebase

https://etherscan.io/address/0x5DE7821A653582B679A53dDEF982b1680e4E3003#code

https://lubutoken.com/
https://etherscan.io/address/0x5DE7821A653582B679A53dDEF982b1680e4E3003#code

@S‘I"‘SH}I{ED LUBU | Security Analysis

SUMMARY

Lubu aims to be the most innovative and memorable token to date on ERC-20. We the Lubu warriors, are here
to build our empire day by day. With a low tax fee and low slippage, we want our community to prosper and
grow. We look to extend our dynasty across the crypto space for years to come! We are aiming for a p2e game
in the future, and we will make sure 100% it will be one of the best games ever.

| Contract Summary

Documentation Quality
LUBU provides a very good documentation with standard of solidity base code.
e The technical description is provided clearly and structured and also dont have any high risk issue.
Code Quality
The Overall quality of the basecode is standard.

e Standard solidity basecode and rules are already followed by LUBU with the discovery of several low

issues.
Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

e SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 401, 420 and 425.

e SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 36, 48, 58, 59, 70, 77,77, 86, 414 and 414.

e SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 7.

@ SYSFIXED LUBU | Security Analysis

CONCLUSION

We have audited the LUBU project released on April 2022 to discover issues and identify potential security
vulnerabilities in LUBU Project. This process is used to find technical issues and security loopholes which
might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the LUBU smart contract code do not pose a considerable risk. The writing of the contract
is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, and a state variable visibility is not set. It is recommended to specify
a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially
important if you rely on bytecode-level verification of the code. We recommended setting the visibility of state
variables explicitly. The default visibility for "deltatx" is internal. Other possible visibility settings are public and
private.

£ SYSFIXED

AUDIT RESULT

LUBU | Security Analysis

Untrusted Callee

addresses.

Article Category Description Result
Functions and state variables visibility should be
N SWC-100 . . - ISSUE
Default Visibility set explicitly. Visibility levels should be specified
SWC-108 . FOUND
consciously.
Integer Overflow SRk T If unchecked math is used, all math operations ISSUE
and Underflow should be safe from overflows and underflows. FOUND
Outdated Compiler It is recommended to use a recent version of the
. SWC-102 L . PASS
Version Solidity compiler.
Contracts should be deployed with the same ISSUE
Floating Pragma SWC-103 compiler version and flags that they have been T
tested thoroughly.
Unchecked Call The return value of a message call should be
SWC-104 PASS
Return Value checked.
Unprotected Ether Due to missing or insufficient access controls,
. SWC-105 L i , PASS
Withdrawal malicious parties can withdraw from the contract.
SELFDESTRUCT The contract should not be self-destructible while it
: SWC-106) PASS
Instruction has funds belonging to users.
Check effect interaction pattern should be followed
Reentrancy SWC-107)) PASS
if the code performs recursive call.
Uninitialized Uninitialized local storage variables can point to
. SWC-109 i . PASS
Storage Pointer unexpected storage locations in the contract.
L SWC-110 Properly functioning code should never reach a
Assert Violation N PASS
SWC-123 failing assert statement.
Deprecated Solidity o)
. SWC-111 Deprecated built-in functions should never be used. PASS
Functions
Delegate call to Delegatecalls should only be allowed to trusted
SWC-112 PASS

£ SYSFIXED

DoS (Denial of
Service)

Race Conditions

Authorization
through tx.origin

Block values as a
proxy for time

Signature Unique
ID

Incorrect
Constructor Name

Shadowing State
Variable

Weak Sources of
Randomness

Write to Arbitrary
Storage Location

Incorrect
Inheritance Order

Insufficient Gas
Griefing

Arbitrary Jump
Function

SWC-113
SWC-128

SWC-114

SWC-115

SWC-116

SWC-117
SWC-121
SWC-122

SWC-118

SWC-119

SWC-120

SWC-124

SWC-125

SWC-126

SWC-127

LUBU | Security Analysis

Execution of the code should never be blocked by a specific
contract state unless required.

Race Conditions and Transactions Order Dependency
should not be possible.

tx.origin should not be used for authorization.

Block numbers should not be used for time calculations.

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

Constructors are special functions that are called only once
during the contract creation.

State variables should not be shadowed.

Random values should never be generated from Chain
Attributes or be predictable.

The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

£ SYSFIXED

LUBU | Security Analysis

Typographical A typographical error can occur for example when the intent
SWC-129) o 4 PASS
Error of a defined operation is to sum a number to a variable.
. Malicious actors can use the Right-To-Left-Override unicode
Override control .
h ¢ SWC-130 character to force RTL text rendering and confuse users as PASS
character
to the real intent of a contract.
. SWC-131 Unused variables are allowed in Solidity and they do not pose
Unused variables) o PASS
SWC-135 a direct security issue.
Unexpected Ether Contracts can behave erroneously when they strictly assume
SWC-132 . PASS
balance a specific Ether balance.
Hash Collisions Using abi.encodePacked() with multiple variable length
. SWC-133 . L Ey PASS
Variable arguments can, in certain situations, lead to a hash collision.
Hardcoded gas The transfer() and send() functions forward a fixed amount
SWC-134 PASS
amount of 2300 gas.
Unencrypted It is a common misconception that private type variables
SWC-136 PASS

Private Data

cannot be read.

@S‘I"‘SHKE[I LUBU | Security Analysis

SMART CONTRACT ANALYSIS

Started Tuesday Apr 26 2022 13:31:30 GMT+0000 (Coordinated Universal Time)
Finished Wednesday Apr 27 2022 07:47:39 GMT+0000 (Coordinated Universal Time)
Mode Standard

Main Source File LUBU_INU.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

@‘S‘I"‘SH}I{ED LUBU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED

LINE 36

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LUBU_INU.sol

Locations

35 function add(uint256 a, uint256 b) internal pure returns (uint256) {
36 uint256 ¢ = a + b;

37 require(c >= a, "SafeMath: addition overflow');

38

39 return c;

40

@‘S‘I"‘SH}I{ED LUBU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 48

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LUBU_INU.sol

Locations

47 require(b <= a, errorMessage);
48 uint256 ¢ = a - b;

49
50 return c;
51 }

52

@‘S‘I"‘SH}I{ED LUBU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 58

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LUBU_INU.sol

Locations

57

58 uint256 ¢ = a * b;

59 require(c / a == b, "SafeMath: multiplication overflow');
60

61 return c;

62

@‘S‘I"‘SH}I{ED LUBU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 59

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LUBU_INU.sol

Locations

58 uint256 ¢ = a * b;
59 require(c / a == b, "SafeMath: nultiplication overflow");

60
61 return c;
62 }

63

@‘S‘I"‘SH}I{ED LUBU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 70

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LUBU_INU.sol

Locations

69 require(b > 0, errorMessage);

70 uint256 ¢ = a / b;

71 /] assert(a ==Db * c¢c + a %b); // There is no case in which this doesn't hold
72

73 return c;

74

@‘S‘I"‘SH}I{ED LUBU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 77

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LUBU_INU.sol

Locations

76 function mx(uint a) internal pure returns (uint256)({

77 return (a * 2) / 100;

78 }

79

80 function nmod(uint256 a, uint256 b) internal pure returns (uint256) {
81

@‘S‘I"‘SH}I{ED LUBU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 77

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LUBU_INU.sol

Locations

76 function mx(uint a) internal pure returns (uint256)({

77 return (a * 2) / 100;

78 }

79

80 function nmod(uint256 a, uint256 b) internal pure returns (uint256) {
81

@S‘I"‘SH}I{ED LUBU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 86

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LUBU_INU.sol

Locations

85 require(b !'= 0, errorMessage);
86 return a % b;

87 }
88 }
89

90

@‘S‘I"‘SH}I{ED LUBU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 414

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LUBU_INU.sol

Locations

413

414 ui nt 256 private _total Supply = 1000000000000 * 10 ** _deci nals;
415 uint 256 private walletMax = _total Supply. mul (5).div(100);

416

417 I Uni swapV2Rout er 02 publ i c uni swapV2Rout er;

418

@‘S‘I"‘SH}I{ED LUBU | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 414

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LUBU_INU.sol

Locations

413

414 ui nt 256 private _total Supply = 1000000000000 * 10 ** _deci nals;
415 uint 256 private walletMax = _total Supply. mul (5).div(100);

416

417 I Uni swapV2Rout er 02 publ i c uni swapV2Rout er;

418

@S‘I"‘SFH{ED LUBU | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 7

low SEVERITY

The current pragma Solidity directive is ""0.8.4". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- LUBU_INU.sol

Locations

pragma solidity 0. 8. 4;

abstract contract Context {

P P O 00 ~NO®
o

[

@S‘I"‘SH}I{ED LUBU | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 401

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_balances" is internal.
Other possible visibility settings are public and private.

Source File
- LUBU_INU.sol

Locations

400

401 mappi ng (address => uint256) _bal ances;

402 nappi ng (address => mappi ng (address => ui nt256)) private _all owances;
403

404 mappi ng (address => bool) private isWalletLimntExenpt;

405

@S‘I"‘SH}I{ED LUBU | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 420

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- LUBU_INU.sol

Locations

419

420 bool i nSwapAndLi qui fy;

421 bool public swapAndLi qui fyEnabl ed = true;

422 bool public swapAndLi qui fyByLimtOnly = fal se;
423 bool public checkWalletLimt = true;

424

@S‘I"‘SH}I{ED LUBU | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 425

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "deltatx" is internal.
Other possible visibility settings are public and private.

Source File
- LUBU_INU.sol

Locations

424

425 uint deltatx;

426 event SwapAndLi qui f yEnabl edUpdat ed(bool enabl ed);
427 event SwapAndLi qui fy(

428 ui nt 256 t okensSwapped,

429

@‘S‘I"‘SH}I{ED LUBU | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below - please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

@‘S‘I"‘SH}I{ED LUBU | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

