
GRAIN

Smart Contract
Audit Report

23 Sep 2022

GRAIN | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

GRAIN | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

GRAIN grain Binance Smart Chain

| Addresses

Contract address 0x1c73c9a44b3023134f7eac7ab30e9ab5a4615a76

Contract deployer address 0x763577A9E0F5cd1FF4a8667ec8cf878A4b29Db24

| Project Website

https://ggoose.farm/

| Codebase

https://bscscan.com/address/0x1c73c9a44b3023134f7eac7ab30e9ab5a4615a76#code

https://ggoose.farm/
https://bscscan.com/address/0x1c73c9a44b3023134f7eac7ab30e9ab5a4615a76#code

GRAIN | Security Analysis

SUMMARY

GGoose (Golden Goose) is a community driven project focused on life-education using the famous fable from
Aesop; "The Goose that laid the Golden Eggs". Our focus is to leave a mark on the NFT space by making a
positive impact on the world. We want to make NFT accessible to most people at a much reduced price point.
This will entitle you to the "Wild Goose Chase" event that will take place in the historical city of Malacca, a
GGoose token, its utility and involvement in life-education! This is just phase 1, phase 2 will blow your minds as
we prepare you for more adventures ahead.

| Contract Summary

Documentation Quality

GRAIN provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by GRAIN with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 8, 1545,
1591, 1661, 1859, 1941, 1981, 2011, 2039, 2083, 2228, 2257, 2718, 2746, 2891, 2899, 2926, 3003, 3032,
3117, 3147, 3532, 3994, 4438, 4666 and 5337.

GRAIN | Security Analysis

CONCLUSION

We have audited the GRAIN project released on September 2022 to discover issues and identify potential
security vulnerabilities in GRAIN Project. This process is used to find technical issues and security loopholes
which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the GRAIN smart contract code do not pose a considerable risk. The writing of the contract
is close to the standard of writing contracts in general. The low-risk issue found is a floating pragma is set. The
current pragma Solidity directive is "">=0.4.220.9.0"". Specifying a fixed compiler version is recommended to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

GRAIN | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

PASS

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

PASS

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

GRAIN | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

GRAIN | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

GRAIN | Security Analysis

SMART CONTRACT ANALYSIS

Started Thursday Sep 22 2022 08:12:39 GMT+0000 (Coordinated Universal Time)

Finished Friday Sep 23 2022 13:52:43 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File GrainV1.sol

| Detected Issues

ID Title Severity Status

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

GRAIN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 8

low SEVERITY
The current pragma Solidity directive is "">=0.4.22<0.9.0"". It is recommended to specify a fixed compiler
version to ensure that the bytecode produced does not vary between builds. This is especially important if you
rely on bytecode-level verification of the code.

Source File
- GrainV1.sol

Locations

7

8 pragma solidity >= 0.4.22 <0.9.0;

9

10 library console {

11 address constant CONSOLE_ADDRESS =

address(0x000000000000000000636F6e736F6c652e6c6f67);

12

GRAIN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1545

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GrainV1.sol

Locations

1544

1545 pragma solidity ^0.8.0;

1546

1547 /**

1548 * @title Counters

1549

GRAIN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1591

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GrainV1.sol

Locations

1590

1591 pragma solidity ^0.8.0;

1592

1593 /**

1594 * @dev String operations.

1595

GRAIN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1661

low SEVERITY
The current pragma Solidity directive is ""^0.8.1"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GrainV1.sol

Locations

1660

1661 pragma solidity ^0.8.1;

1662

1663 /**

1664 * @dev Collection of functions related to the address type

1665

GRAIN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1859

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GrainV1.sol

Locations

1858

1859 pragma solidity ^0.8.0;

1860

1861

1862 /**

1863

GRAIN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1941

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GrainV1.sol

Locations

1940

1941 pragma solidity ^0.8.0;

1942

1943

1944 /**

1945

GRAIN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1981

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GrainV1.sol

Locations

1980

1981 pragma solidity ^0.8.0;

1982

1983 /**

1984 * @title ERC721 token receiver interface

1985

GRAIN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 2011

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GrainV1.sol

Locations

2010

2011 pragma solidity ^0.8.0;

2012

2013 /**

2014 * @dev Interface of the ERC165 standard, as defined in the

2015

GRAIN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 2039

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GrainV1.sol

Locations

2038

2039 pragma solidity ^0.8.0;

2040

2041

2042

2043

GRAIN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 2083

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GrainV1.sol

Locations

2082

2083 pragma solidity ^0.8.0;

2084

2085

2086 /**

2087

GRAIN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 2228

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GrainV1.sol

Locations

2227

2228 pragma solidity ^0.8.0;

2229

2230

2231 /**

2232

GRAIN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 2257

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GrainV1.sol

Locations

2256

2257 pragma solidity ^0.8.0;

2258

2259

2260

2261

GRAIN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 2718

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GrainV1.sol

Locations

2717

2718 pragma solidity ^0.8.0;

2719

2720 /**

2721 * @dev Interface of the ERC165 standard, as defined in the

2722

GRAIN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 2746

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GrainV1.sol

Locations

2745

2746 pragma solidity ^0.8.0;

2747

2748

2749 /**

2750

GRAIN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 2891

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GrainV1.sol

Locations

2890

2891 pragma solidity ^0.8.0;

2892

2893

2894 // File: @openzeppelin/contracts/utils/Context.sol

2895

GRAIN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 2899

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GrainV1.sol

Locations

2898

2899 pragma solidity ^0.8.0;

2900

2901 /**

2902 * @dev Provides information about the current execution context, including the

2903

GRAIN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 2926

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GrainV1.sol

Locations

2925

2926 pragma solidity ^0.8.0;

2927

2928

2929 /**

2930

GRAIN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 3003

low SEVERITY
The current pragma Solidity directive is "">=0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GrainV1.sol

Locations

3002

3003 pragma solidity >=0.8.0;

3004

3005

3006 contract Authorizable is Ownable {

3007

GRAIN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 3032

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GrainV1.sol

Locations

3031

3032 pragma solidity ^0.8.0;

3033

3034 /**

3035 * @dev Interface of the ERC20 standard as defined in the EIP.

3036

GRAIN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 3117

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GrainV1.sol

Locations

3116

3117 pragma solidity ^0.8.0;

3118

3119

3120 /**

3121

GRAIN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 3147

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GrainV1.sol

Locations

3146

3147 pragma solidity ^0.8.0;

3148

3149

3150

3151

GRAIN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 3532

low SEVERITY
The current pragma Solidity directive is "">=0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GrainV1.sol

Locations

3531

3532 pragma solidity >=0.8.0;

3533

3534

3535

3536

GRAIN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 3994

low SEVERITY
The current pragma Solidity directive is "">=0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GrainV1.sol

Locations

3993

3994 pragma solidity >=0.8.0;

3995

3996

3997

3998

GRAIN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 4438

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GrainV1.sol

Locations

4437

4438 pragma solidity ^0.8.0;

4439

4440 // CAUTION

4441 // This version of SafeMath should only be used with Solidity 0.8 or later,

4442

GRAIN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 4666

low SEVERITY
The current pragma Solidity directive is "">=0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GrainV1.sol

Locations

4665

4666 pragma solidity >=0.8.0;

4667

4668

4669

4670

GRAIN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 5337

low SEVERITY
The current pragma Solidity directive is "">=0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GrainV1.sol

Locations

5336

5337 pragma solidity >=0.8.0;

5338

5339

5340

5341

GRAIN | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

GRAIN | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

