
Wrapped MonetaryUnit

Smart Contract
Audit Report

04 Jan 2021

Wrapped MonetaryUnit | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Wrapped MonetaryUnit | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Wrapped MonetaryUnit WMUE Binance Smart Chain

| Addresses

Contract address 0x00abaa93faf8fdc4f382135a7a56f9cf7c3edd21

Contract deployer address 0x600d924195915c9447EdfA1b6Ca3E6A4a353AF64

| Project Website

https://www.monetaryunit.org/

| Codebase

https://bscscan.com/address/0x00abaa93faf8fdc4f382135a7a56f9cf7c3edd21#code

https://www.monetaryunit.org/
https://bscscan.com/address/0x00abaa93faf8fdc4f382135a7a56f9cf7c3edd21#code

Wrapped MonetaryUnit | Security Analysis

SUMMARY

Wrapped MonetaryUnit (wMUE) is a token on the other blockchains that represents the MonetaryUnit coin at a
1:1 ratio. Users can swap MUE coins for wMUE tokens and use them on different chains.

| Contract Summary

Documentation Quality

Wrapped MonetaryUnit provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Wrapped MonetaryUnit with the discovery
of several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 7, 30, 106,
264, 565, 603, 626, 712, 742, 771, 935, 1040, 1091, 1245, 1307, 1373, 1391, 1426 and 1439.
SWC-107 | It is recommended to use a reentrancy lock, reentrancy weaknesses detected on lines 1387,
1238 and 1220.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 1387 and 1238.

Wrapped MonetaryUnit | Security Analysis

CONCLUSION

We have audited the Wrapped MonetaryUnit project released on January 2021 to discover issues and identify
potential security vulnerabilities in the Wrapped MonetaryUnit Project. This process is used to find technical
issues and security loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues in the Wrapped MonetaryUnit smart contract code do not pose a considerable risk. The writing of
the contract is close to the standard of writing contracts in general. The low-risk issues found are some
arithmetic operation issues, a floating pragma is set, a call to a user-supplied address is executed, and a call to
a user-supplied address is executed. The current pragma Solidity directive is ""^0.7.0"". It is recommended to
specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
especially important if you rely on bytecode-level verification of the code. An external message call to an
address specified by the caller is executed. Note that the callee account might contain arbitrary code and
could re-enter any function within this contract. Reentering the contract in an intermediate state may lead to
unexpected behaviour. Make sure that no state modifications are executed after this call and/or reentrancy
guards are in place. A requirement was violated in a nested call and the call was reverted as a result. Make
sure valid inputs are provided to the nested call (for instance, via passed arguments).

Wrapped MonetaryUnit | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

PASS

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

ISSUE
FOUND

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Wrapped MonetaryUnit | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Wrapped MonetaryUnit | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Wrapped MonetaryUnit | Security Analysis

SMART CONTRACT ANALYSIS

Started Sunday Jan 03 2021 06:42:34 GMT+0000 (Coordinated Universal Time)

Finished Monday Jan 04 2021 22:50:13 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File WrappedMUE.sol

| Detected Issues

ID Title Severity Status

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-107 A CALL TO A USER-SUPPLIED ADDRESS IS EXECUTED. low acknowledged

SWC-107 A CALL TO A USER-SUPPLIED ADDRESS IS EXECUTED. low acknowledged

SWC-107 A CALL TO A USER-SUPPLIED ADDRESS IS EXECUTED. low acknowledged

SWC-123 REQUIREMENT VIOLATION. low acknowledged

SWC-123 REQUIREMENT VIOLATION. low acknowledged

Wrapped MonetaryUnit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 7

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WrappedMUE.sol

Locations

6

7 pragma solidity ^0.7.0;

8

9 /*

10 * @dev Provides information about the current execution context, including the

11

Wrapped MonetaryUnit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 30

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WrappedMUE.sol

Locations

29

30 pragma solidity ^0.7.0;

31

32 /**

33 * @dev Interface of the ERC20 standard as defined in the EIP.

34

Wrapped MonetaryUnit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 106

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WrappedMUE.sol

Locations

105

106 pragma solidity ^0.7.0;

107

108 /**

109 * @dev Wrappers over Solidity's arithmetic operations with added overflow

110

Wrapped MonetaryUnit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 264

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WrappedMUE.sol

Locations

263

264 pragma solidity ^0.7.0;

265

266 /**

267 * @dev Implementation of the {IERC20} interface.

268

Wrapped MonetaryUnit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 565

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WrappedMUE.sol

Locations

564

565 pragma solidity ^0.7.0;

566

567 /**

568 * @dev Extension of {ERC20} that allows token holders to destroy both their own

569

Wrapped MonetaryUnit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 603

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WrappedMUE.sol

Locations

602

603 pragma solidity ^0.7.0;

604

605 /**

606 * @dev Interface of the ERC165 standard, as defined in the

607

Wrapped MonetaryUnit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 626

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WrappedMUE.sol

Locations

625

626 pragma solidity ^0.7.0;

627

628 /**

629 * @title IERC1363 Interface

630

Wrapped MonetaryUnit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 712

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WrappedMUE.sol

Locations

711

712 pragma solidity ^0.7.0;

713

714 /**

715 * @title IERC1363Receiver Interface

716

Wrapped MonetaryUnit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 742

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WrappedMUE.sol

Locations

741

742 pragma solidity ^0.7.0;

743

744 /**

745 * @title IERC1363Spender Interface

746

Wrapped MonetaryUnit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 771

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WrappedMUE.sol

Locations

770

771 pragma solidity ^0.7.0;

772

773 /**

774 * @dev Collection of functions related to the address type

775

Wrapped MonetaryUnit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 935

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WrappedMUE.sol

Locations

934

935 pragma solidity ^0.7.0;

936

937 /**

938 * @dev Library used to query support of an interface declared via {IERC165}.

939

Wrapped MonetaryUnit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1040

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WrappedMUE.sol

Locations

1039

1040 pragma solidity ^0.7.0;

1041

1042 /**

1043 * @dev Implementation of the {IERC165} interface.

1044

Wrapped MonetaryUnit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1091

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WrappedMUE.sol

Locations

1090

1091 pragma solidity ^0.7.0;

1092

1093 /**

1094 * @title ERC1363

1095

Wrapped MonetaryUnit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1245

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WrappedMUE.sol

Locations

1244

1245 pragma solidity ^0.7.0;

1246

1247 /**

1248 * @title ERC20Mintable

1249

Wrapped MonetaryUnit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1307

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WrappedMUE.sol

Locations

1306

1307 pragma solidity ^0.7.0;

1308

1309 /**

1310 * @dev Contract module which provides a basic access control mechanism, where

1311

Wrapped MonetaryUnit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1373

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WrappedMUE.sol

Locations

1372

1373 pragma solidity ^0.7.0;

1374

1375 /**

1376 * @title TokenRecover

1377

Wrapped MonetaryUnit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1391

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WrappedMUE.sol

Locations

1390

1391 pragma solidity ^0.7.0;

1392

1393 /**

1394 * @title ServiceReceiver

1395

Wrapped MonetaryUnit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1426

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WrappedMUE.sol

Locations

1425

1426 pragma solidity ^0.7.0;

1427

1428 /**

1429 * @title ServicePayer

1430

Wrapped MonetaryUnit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1439

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WrappedMUE.sol

Locations

1438

1439 pragma solidity ^0.7.0;

1440

1441 /**

1442 * @title WrappedMUE

1443

Wrapped MonetaryUnit | Security Analysis

SWC-107 | A CALL TO A USER-SUPPLIED ADDRESS IS
EXECUTED.
LINE 1387

low SEVERITY
An external message call to an address specified by the caller is executed. Note that the callee account might
contain arbitrary code and could re-enter any function within this contract. Reentering the contract in an
intermediate state may lead to unexpected behaviour. Make sure that no state modifications are executed
after this call and/or reentrancy guards are in place.

Source File
- WrappedMUE.sol

Locations

1386 function recoverERC20(address tokenAddress, uint256 tokenAmount) public onlyOwner

{

1387 IERC20(tokenAddress).transfer(owner(), tokenAmount);

1388 }

1389 }

1390

1391

Wrapped MonetaryUnit | Security Analysis

SWC-107 | A CALL TO A USER-SUPPLIED ADDRESS IS
EXECUTED.
LINE 1238

low SEVERITY
An external message call to an address specified by the caller is executed. Note that the callee account might
contain arbitrary code and could re-enter any function within this contract. Reentering the contract in an
intermediate state may lead to unexpected behaviour. Make sure that no state modifications are executed
after this call and/or reentrancy guards are in place.

Source File
- WrappedMUE.sol

Locations

1237 }

1238 bytes4 retval = IERC1363Spender(spender).onApprovalReceived(

1239 _msgSender(), amount, data

1240);

1241 return (retval == _ERC1363_APPROVED);

1242

Wrapped MonetaryUnit | Security Analysis

SWC-107 | A CALL TO A USER-SUPPLIED ADDRESS IS
EXECUTED.
LINE 1220

low SEVERITY
An external message call to an address specified by the caller is executed. Note that the callee account might
contain arbitrary code and could re-enter any function within this contract. Reentering the contract in an
intermediate state may lead to unexpected behaviour. Make sure that no state modifications are executed
after this call and/or reentrancy guards are in place.

Source File
- WrappedMUE.sol

Locations

1219 }

1220 bytes4 retval = IERC1363Receiver(recipient).onTransferReceived(

1221 _msgSender(), sender, amount, data

1222);

1223 return (retval == _ERC1363_RECEIVED);

1224

Wrapped MonetaryUnit | Security Analysis

SWC-123 | REQUIREMENT VIOLATION.
LINE 1387

low SEVERITY
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are
provided to the nested call (for instance, via passed arguments).

Source File
- WrappedMUE.sol

Locations

1386 function recoverERC20(address tokenAddress, uint256 tokenAmount) public onlyOwner

{

1387 IERC20(tokenAddress).transfer(owner(), tokenAmount);

1388 }

1389 }

1390

1391

Wrapped MonetaryUnit | Security Analysis

SWC-123 | REQUIREMENT VIOLATION.
LINE 1238

low SEVERITY
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are
provided to the nested call (for instance, via passed arguments).

Source File
- WrappedMUE.sol

Locations

1237 }

1238 bytes4 retval = IERC1363Spender(spender).onApprovalReceived(

1239 _msgSender(), amount, data

1240);

1241 return (retval == _ERC1363_APPROVED);

1242

Wrapped MonetaryUnit | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Wrapped MonetaryUnit | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

