
AKITAVAX

Smart Contract
Audit Report

27 Nov 2021

AKITAVAX | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

AKITAVAX | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

AKITAVAX AKITAX Avalanche

| Addresses

Contract address 0xE06fba763C2104dB5027F57f6A5Be0a0D86308af

Contract deployer address 0x203fa6a957665c208370B39Eaa1654C85122Ba16

| Project Website

https://akitavax.com/

| Codebase

https://snowtrace.io/address/0xE06fba763C2104dB5027F57f6A5Be0a0D86308af#code

https://akitavax.com/
https://snowtrace.io/address/0xE06fba763C2104dB5027F57f6A5Be0a0D86308af#code

AKITAVAX | Security Analysis

SUMMARY

Akitavax is a community driven meme based cryptocurrency project that takes different approach on
technologies served from other meme coins. Akitavax is not created as a common meme token project all
critical decisions about the project are made by the founders, but it is created as a community meme token
project that aims to involve all the enthusiasts to contribute in our social and artistic movement.

| Contract Summary

Documentation Quality

AKITAVAX provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by AKITAVAX with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 10, 370, 398,
429, 499, 590, 623, 650, 875, 941, 1034, 1119, 1149, 1507, 1542 and 1587.

AKITAVAX | Security Analysis

CONCLUSION

We have audited the AKITAVAX project released in November 2021 to discover issues and identify potential
security vulnerabilities in NamaFile Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the AKITAVAX smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some a floating
pragma is set. It is recommended to specify a fixed compiler version to ensure that the bytecode produced
does not vary between builds. This is especially important if you rely on bytecode-level verification of the code.

AKITAVAX | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

PASS

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

PASS

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

AKITAVAX | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

AKITAVAX | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

AKITAVAX | Security Analysis

SMART CONTRACT ANALYSIS

Started Friday Nov 26 2021 16:53:13 GMT+0000 (Coordinated Universal Time)

Finished Saturday Nov 27 2021 20:14:10 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File ERC20PresetMinterPauser.sol

| Detected Issues

ID Title Severity Status

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

AKITAVAX | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 10

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ERC20PresetMinterPauser.sol

Locations

9

10 pragma solidity ^0.8.0;

11

12 /**

13 * @dev Library for managing

14

AKITAVAX | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 370

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ERC20PresetMinterPauser.sol

Locations

369

370 pragma solidity ^0.8.0;

371

372 /**

373 * @dev Interface of the ERC165 standard, as defined in the

374

AKITAVAX | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 398

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ERC20PresetMinterPauser.sol

Locations

397

398 pragma solidity ^0.8.0;

399

400

401 /**

402

AKITAVAX | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 429

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ERC20PresetMinterPauser.sol

Locations

428

429 pragma solidity ^0.8.0;

430

431 /**

432 * @dev String operations.

433

AKITAVAX | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 499

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ERC20PresetMinterPauser.sol

Locations

498

499 pragma solidity ^0.8.0;

500

501 /**

502 * @dev External interface of AccessControl declared to support ERC165 detection.

503

AKITAVAX | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 590

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ERC20PresetMinterPauser.sol

Locations

589

590 pragma solidity ^0.8.0;

591

592

593 /**

594

AKITAVAX | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 623

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ERC20PresetMinterPauser.sol

Locations

622

623 pragma solidity ^0.8.0;

624

625 /**

626 * @dev Provides information about the current execution context, including the

627

AKITAVAX | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 650

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ERC20PresetMinterPauser.sol

Locations

649

650 pragma solidity ^0.8.0;

651

652

653

654

AKITAVAX | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 875

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ERC20PresetMinterPauser.sol

Locations

874

875 pragma solidity ^0.8.0;

876

877

878

879

AKITAVAX | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 941

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ERC20PresetMinterPauser.sol

Locations

940

941 pragma solidity ^0.8.0;

942

943

944 /**

945

AKITAVAX | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1034

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ERC20PresetMinterPauser.sol

Locations

1033

1034 pragma solidity ^0.8.0;

1035

1036 /**

1037 * @dev Interface of the ERC20 standard as defined in the EIP.

1038

AKITAVAX | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1119

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ERC20PresetMinterPauser.sol

Locations

1118

1119 pragma solidity ^0.8.0;

1120

1121

1122 /**

1123

AKITAVAX | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1149

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ERC20PresetMinterPauser.sol

Locations

1148

1149 pragma solidity ^0.8.0;

1150

1151

1152

1153

AKITAVAX | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1507

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ERC20PresetMinterPauser.sol

Locations

1506

1507 pragma solidity ^0.8.0;

1508

1509

1510

1511

AKITAVAX | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1542

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ERC20PresetMinterPauser.sol

Locations

1541

1542 pragma solidity ^0.8.0;

1543

1544

1545

1546

AKITAVAX | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1587

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ERC20PresetMinterPauser.sol

Locations

1586

1587 pragma solidity ^0.8.0;

1588

1589

1590

1591

AKITAVAX | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

AKITAVAX | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

