
KISEKI

Smart Contract
Audit Report

29 Jan 2023



KISEKI | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us



KISEKI | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

KISEKI KISEKI Binance Smart Chain

| Addresses

Contract address 0xD60F5491460903D090cE602E47b0BbF91eb5Da57

Contract deployer address 0x694981b6F83fea88C2Bbd1b7BAEEd9FA2330e5b4

| Project Website

https://www.kisekiwallet.net/ 

| Codebase

https://bscscan.com/address/0xD60F5491460903D090cE602E47b0BbF91eb5Da57#code 

https://www.kisekiwallet.net/
https://bscscan.com/address/0xD60F5491460903D090cE602E47b0BbF91eb5Da57#code


KISEKI | Security Analysis

SUMMARY

Revolutionize the way you access Web3 Kiseki Wallet is a powerful and beautifully designed, all-in-one DeFi
tool, which will give traders an advantage in speed, security, and versatility, through a variety of unique features
its ZERO tax, Snipe Tokens, Multi-Wallet Functionality & Swap, Future Features: In-Wallet Governance,
Launchpad, Release on iOS & Android, TG, YouTube, TikTok, Exclusive NFT Airdrop, for the FIRST 250 qualified
buyers, Demo Live.

| Contract Summary

Documentation Quality

KISEKI provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by KISEKI with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% ( Through Codebase )

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 174, 191, 207, 229, 231, 243, 244, 655, 655, 655, 656, 733, 774, 774, 776, 776, 780, 807, 807, 811,
811 and 822.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 791 and 792.



KISEKI | Security Analysis

CONCLUSION

We have audited the NamaProject Coin which has released on January 2023 to discover issues and identify
potential security vulnerabilities in NamaProject Project. This process is used to find bugs, technical issues,
and security loopholes that find some common issues in the code.

The security audit report provides a satisfactory result with some low-risk issues.

The most common issue found in writing code on contracts that do not pose a big risk, writing on contracts is
close to the standard of writing contracts in general. Some of the low issues were Out of bounds array access.
Be aware The index access expression can cause an exception in case of the use of an invalid array index
value.



KISEKI | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

PASS

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS



KISEKI | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS



KISEKI | Security Analysis

SMART CONTRACT ANALYSIS

Started Saturday Jan 28 2023 03:26:39 GMT+0000 (Coordinated Universal Time)

Finished Sunday Jan 29 2023 09:53:22 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File KISEKI.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged



SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged



KISEKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 174

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- KISEKI.sol 

Locations

173   unchecked {

174   _approve(sender, _msgSender(), currentAllowance - amount);

175   }

176   }

177   

178   



KISEKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 191

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- KISEKI.sol 

Locations

190   spender,

191   _allowances[_msgSender()][spender] + addedValue

192   );

193   return true;

194   }

195   



KISEKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 207

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- KISEKI.sol 

Locations

206   unchecked {

207   _approve(_msgSender(), spender, currentAllowance - subtractedValue);

208   }

209   

210   return true;

211   



KISEKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 229

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- KISEKI.sol 

Locations

228   unchecked {

229   _balances[sender] = senderBalance - amount;

230   }

231   _balances[recipient] += amount;

232   

233   



KISEKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 231

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- KISEKI.sol 

Locations

230   }

231   _balances[recipient] += amount;

232   

233   emit Transfer(sender, recipient, amount);

234   

235   



KISEKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 243

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- KISEKI.sol 

Locations

242   

243   _totalSupply += amount;

244   _balances[account] += amount;

245   emit Transfer(address(0), account, amount);

246   

247   



KISEKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 244

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- KISEKI.sol 

Locations

243   _totalSupply += amount;

244   _balances[account] += amount;

245   emit Transfer(address(0), account, amount);

246   

247   _afterTokenTransfer(address(0), account, amount);

248   



KISEKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 655

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- KISEKI.sol 

Locations

654   

655   _mint(owner(), 10**8 * (10**18));

656   swapTokensAtAmount = totalSupply() / 5000;

657   }

658   

659   



KISEKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 655

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- KISEKI.sol 

Locations

654   

655   _mint(owner(), 10**8 * (10**18));

656   swapTokensAtAmount = totalSupply() / 5000;

657   }

658   

659   



KISEKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 655

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- KISEKI.sol 

Locations

654   

655   _mint(owner(), 10**8 * (10**18));

656   swapTokensAtAmount = totalSupply() / 5000;

657   }

658   

659   



KISEKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 656

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- KISEKI.sol 

Locations

655   _mint(owner(), 10**8 * (10**18));

656   swapTokensAtAmount = totalSupply() / 5000;

657   }

658   

659   receive() external payable {}

660   



KISEKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 733

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- KISEKI.sol 

Locations

732   require(

733   newAmount > totalSupply() / 100000,

734   "SwapTokensAtAmount must be greater than 0.001% of total supply"

735   );

736   swapTokensAtAmount = newAmount;

737   



KISEKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 774

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- KISEKI.sol 

Locations

773   if (from == uniswapV2Pair) {

774   fees = (amount * feeOnBuy) / 100;

775   } else if (to == uniswapV2Pair) {

776   fees = (amount * feeOnSell) / 100;

777   } else {

778   



KISEKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 774

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- KISEKI.sol 

Locations

773   if (from == uniswapV2Pair) {

774   fees = (amount * feeOnBuy) / 100;

775   } else if (to == uniswapV2Pair) {

776   fees = (amount * feeOnSell) / 100;

777   } else {

778   



KISEKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 776

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- KISEKI.sol 

Locations

775   } else if (to == uniswapV2Pair) {

776   fees = (amount * feeOnSell) / 100;

777   } else {

778   fees = 0;

779   }

780   



KISEKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 776

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- KISEKI.sol 

Locations

775   } else if (to == uniswapV2Pair) {

776   fees = (amount * feeOnSell) / 100;

777   } else {

778   fees = 0;

779   }

780   



KISEKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 780

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- KISEKI.sol 

Locations

779   }

780   amount -= fees;

781   if (fees > 0) {

782   super._transfer(from, address(this), fees);

783   }

784   



KISEKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 807

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- KISEKI.sol 

Locations

806   payable(marketingWallet),

807   (addressBalance * marketingShare) / SHAREDIVISOR

808   );

809   sendBNB(

810   payable(devWallet),

811   



KISEKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 807

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- KISEKI.sol 

Locations

806   payable(marketingWallet),

807   (addressBalance * marketingShare) / SHAREDIVISOR

808   );

809   sendBNB(

810   payable(devWallet),

811   



KISEKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 811

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- KISEKI.sol 

Locations

810   payable(devWallet),

811   (addressBalance * teamShare) / SHAREDIVISOR

812   );

813   

814   emit SwapAndSendFee(tokenAmount, newBalance);

815   



KISEKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 811

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- KISEKI.sol 

Locations

810   payable(devWallet),

811   (addressBalance * teamShare) / SHAREDIVISOR

812   );

813   

814   emit SwapAndSendFee(tokenAmount, newBalance);

815   



KISEKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 822

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- KISEKI.sol 

Locations

821   require(

822   newTeamShare + newMarketingShare == SHAREDIVISOR,

823   "Sum of shares must be 100"

824   );

825   

826   



KISEKI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 791

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- KISEKI.sol 

Locations

790   address[] memory path = new address[](2);

791   path[0] = address(this);

792   path[1] = uniswapV2Router.WETH();

793   

794   uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

795   



KISEKI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 792

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- KISEKI.sol 

Locations

791   path[0] = address(this);

792   path[1] = uniswapV2Router.WETH();

793   

794   uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

795   tokenAmount,

796   



KISEKI | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.



KISEKI | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.


