
Layer2DAO

Smart Contract
Audit Report

30 Jan 2022

Layer2DAO | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Layer2DAO | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Layer2DAO L2DAO Arbitrum

| Addresses

Contract address 0x2cab3abfc1670d1a452df502e216a66883cdf079

Contract deployer address 0xFd0Bd19e849493F77D8f77eD026520C1368102Bd

| Project Website

https://www.layer2dao.org/

| Codebase

https://arbiscan.io/address/0x2cab3abfc1670d1a452df502e216a66883cdf079#code

https://www.layer2dao.org/
https://arbiscan.io/address/0x2cab3abfc1670d1a452df502e216a66883cdf079#code

Layer2DAO | Security Analysis

SUMMARY

Layer2DAO is expanding the Ethereum L2 ecosystem and investing in L2 ecosystem projects. The DAO is using
its treasury to support high-impact L2 protocols and ecosystem plays, serving as a diversified venture fund for
investors seeking exposure to the L2 ecosystem growth. It also provides liquidity, depositing and staking,
perpetually reinvesting proceeds into the DAO.

| Contract Summary

Documentation Quality

Layer2DAO provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Layer2DAO with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 47, 336, 336, 347, 347, 347, 380, 388, 423, 424, 428, 429, 429, 430, 445, 455, 455, 458, 458, 458,
1252, 1271, 1293, 1326, 1328, 1349, 1350, 1375, 1377, 1616, 1666, 1670, 1782, 1785, 1786, 1793, 1797,
1851, 1853, 1853, 1853, 1853, 1853, 1864, 1879, 1913, 1913, 388, 1616, 1670, 1782, 1785 and 1786.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 11, 66, 310,
356, 402, 472, 708, 814, 877, 904, 982, 1067, 1097, 1455, 1544, 1804 and 1888.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 48, 429, 456, 457, 459, 459, 1594, 1616, 1663, 1670, 1782, 1785 and
1786.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 1627, 1640,
1785 and 1788.

Layer2DAO | Security Analysis

CONCLUSION

We have audited the Layer2DAO project released in January 2022 to discover issues and identify potential
security vulnerabilities in Layer2DAO Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the Layer2DAO smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, and out-of-bounds array access which the index access expression
can cause an exception in case an invalid array index value is used.

Layer2DAO | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Layer2DAO | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Layer2DAO | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Layer2DAO | Security Analysis

SMART CONTRACT ANALYSIS

Started Saturday Jan 29 2022 10:28:36 GMT+0000 (Coordinated Universal Time)

Finished Sunday Jan 30 2022 17:44:12 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File L2DAOToken.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "--" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 47

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

46 bytes32 computedHash = leaf;

47 for (uint256 i = 0; i < proof.length; i++) {

48 bytes32 proofElement = proof[i];

49 if (computedHash <= proofElement) {

50 // Hash(current computed hash + current element of the proof)

51

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 336

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

335 // (a + b) / 2 can overflow.

336 return (a & b) + (a ^ b) / 2;

337 }

338

339 /**

340

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 336

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

335 // (a + b) / 2 can overflow.

336 return (a & b) + (a ^ b) / 2;

337 }

338

339 /**

340

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 347

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

346 // (a + b - 1) / b can overflow on addition, so we distribute.

347 return a / b + (a % b == 0 ? 0 : 1);

348 }

349 }

350

351

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 347

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

346 // (a + b - 1) / b can overflow on addition, so we distribute.

347 return a / b + (a % b == 0 ? 0 : 1);

348 }

349 }

350

351

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 347

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

346 // (a + b - 1) / b can overflow on addition, so we distribute.

347 return a / b + (a % b == 0 ? 0 : 1);

348 }

349 }

350

351

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 380

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

379 unchecked {

380 counter._value += 1;

381 }

382 }

383

384

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 388

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

387 unchecked {

388 counter._value = value - 1;

389 }

390 }

391

392

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 423

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

422 while (temp != 0) {

423 digits++;

424 temp /= 10;

425 }

426 bytes memory buffer = new bytes(digits);

427

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/=" DISCOVERED
LINE 424

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

423 digits++;

424 temp /= 10;

425 }

426 bytes memory buffer = new bytes(digits);

427 while (value != 0) {

428

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 428

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

427 while (value != 0) {

428 digits -= 1;

429 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

430 value /= 10;

431 }

432

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 429

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

428 digits -= 1;

429 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

430 value /= 10;

431 }

432 return string(buffer);

433

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 429

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

428 digits -= 1;

429 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

430 value /= 10;

431 }

432 return string(buffer);

433

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/=" DISCOVERED
LINE 430

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

429 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

430 value /= 10;

431 }

432 return string(buffer);

433 }

434

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 445

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

444 while (temp != 0) {

445 length++;

446 temp >>= 8;

447 }

448 return toHexString(value, length);

449

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 455

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

454 function toHexString(uint256 value, uint256 length) internal pure returns (string

memory) {

455 bytes memory buffer = new bytes(2 * length + 2);

456 buffer[0] = "0";

457 buffer[1] = "x";

458 for (uint256 i = 2 * length + 1; i > 1; --i) {

459

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 455

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

454 function toHexString(uint256 value, uint256 length) internal pure returns (string

memory) {

455 bytes memory buffer = new bytes(2 * length + 2);

456 buffer[0] = "0";

457 buffer[1] = "x";

458 for (uint256 i = 2 * length + 1; i > 1; --i) {

459

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 458

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

457 buffer[1] = "x";

458 for (uint256 i = 2 * length + 1; i > 1; --i) {

459 buffer[i] = _HEX_SYMBOLS[value & 0xf];

460 value >>= 4;

461 }

462

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 458

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

457 buffer[1] = "x";

458 for (uint256 i = 2 * length + 1; i > 1; --i) {

459 buffer[i] = _HEX_SYMBOLS[value & 0xf];

460 value >>= 4;

461 }

462

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "--" DISCOVERED
LINE 458

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

457 buffer[1] = "x";

458 for (uint256 i = 2 * length + 1; i > 1; --i) {

459 buffer[i] = _HEX_SYMBOLS[value & 0xf];

460 value >>= 4;

461 }

462

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1252

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1251 unchecked {

1252 _approve(sender, _msgSender(), currentAllowance - amount);

1253 }

1254

1255 return true;

1256

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1271

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1270 function increaseAllowance(address spender, uint256 addedValue) public virtual

returns (bool) {

1271 _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);

1272 return true;

1273 }

1274

1275

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1293

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1292 unchecked {

1293 _approve(_msgSender(), spender, currentAllowance - subtractedValue);

1294 }

1295

1296 return true;

1297

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1326

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1325 unchecked {

1326 _balances[sender] = senderBalance - amount;

1327 }

1328 _balances[recipient] += amount;

1329

1330

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1328

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1327 }

1328 _balances[recipient] += amount;

1329

1330 emit Transfer(sender, recipient, amount);

1331

1332

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1349

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1348

1349 _totalSupply += amount;

1350 _balances[account] += amount;

1351 emit Transfer(address(0), account, amount);

1352

1353

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1350

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1349 _totalSupply += amount;

1350 _balances[account] += amount;

1351 emit Transfer(address(0), account, amount);

1352

1353 _afterTokenTransfer(address(0), account, amount);

1354

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1375

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1374 unchecked {

1375 _balances[account] = accountBalance - amount;

1376 }

1377 _totalSupply -= amount;

1378

1379

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 1377

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1376 }

1377 _totalSupply -= amount;

1378

1379 emit Transfer(account, address(0), amount);

1380

1381

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1616

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1615 uint256 pos = _checkpoints[account].length;

1616 return pos == 0 ? 0 : _checkpoints[account][pos - 1].votes;

1617 }

1618

1619 /**

1620

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1666

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1665 } else {

1666 low = mid + 1;

1667 }

1668 }

1669

1670

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1670

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1669

1670 return high == 0 ? 0 : ckpts[high - 1].votes;

1671 }

1672

1673 /**

1674

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1782

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1781 uint256 pos = ckpts.length;

1782 oldWeight = pos == 0 ? 0 : ckpts[pos - 1].votes;

1783 newWeight = op(oldWeight, delta);

1784

1785 if (pos > 0 && ckpts[pos - 1].fromBlock == block.number) {

1786

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1785

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1784

1785 if (pos > 0 && ckpts[pos - 1].fromBlock == block.number) {

1786 ckpts[pos - 1].votes = SafeCast.toUint224(newWeight);

1787 } else {

1788 ckpts.push(Checkpoint({fromBlock: SafeCast.toUint32(block.number), votes:

SafeCast.toUint224(newWeight)}));

1789

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1786

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1785 if (pos > 0 && ckpts[pos - 1].fromBlock == block.number) {

1786 ckpts[pos - 1].votes = SafeCast.toUint224(newWeight);

1787 } else {

1788 ckpts.push(Checkpoint({fromBlock: SafeCast.toUint32(block.number), votes:

SafeCast.toUint224(newWeight)}));

1789 }

1790

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1793

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1792 function _add(uint256 a, uint256 b) private pure returns (uint256) {

1793 return a + b;

1794 }

1795

1796 function _subtract(uint256 a, uint256 b) private pure returns (uint256) {

1797

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1797

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1796 function _subtract(uint256 a, uint256 b) private pure returns (uint256) {

1797 return a - b;

1798 }

1799 }

1800

1801

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1851

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1850 if(block.timestamp >= unlockEnd) {

1851 return locked - claimed;

1852 }

1853 return (locked * (block.timestamp - unlockBegin)) / (unlockEnd - unlockBegin) -

claimed;

1854 }

1855

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1853

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1852 }

1853 return (locked * (block.timestamp - unlockBegin)) / (unlockEnd - unlockBegin) -

claimed;

1854 }

1855

1856 /**

1857

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1853

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1852 }

1853 return (locked * (block.timestamp - unlockBegin)) / (unlockEnd - unlockBegin) -

claimed;

1854 }

1855

1856 /**

1857

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1853

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1852 }

1853 return (locked * (block.timestamp - unlockBegin)) / (unlockEnd - unlockBegin) -

claimed;

1854 }

1855

1856 /**

1857

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1853

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1852 }

1853 return (locked * (block.timestamp - unlockBegin)) / (unlockEnd - unlockBegin) -

claimed;

1854 }

1855

1856 /**

1857

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1853

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1852 }

1853 return (locked * (block.timestamp - unlockBegin)) / (unlockEnd - unlockBegin) -

claimed;

1854 }

1855

1856 /**

1857

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1864

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1863 require(block.timestamp < unlockEnd, "TokenLock: Unlock period already complete");

1864 lockedAmounts[recipient] += amount;

1865 require(token.transferFrom(msg.sender, address(this), amount), "TokenLock:

Transfer failed");

1866 emit Locked(msg.sender, recipient, amount);

1867 }

1868

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1879

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1878 }

1879 claimedAmounts[msg.sender] += amount;

1880 require(token.transfer(recipient, amount), "TokenLock: Transfer failed");

1881 emit Claimed(msg.sender, recipient, amount);

1882 }

1883

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1913

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1912 uint256 constant teamSupply = 100_000_000e18;

1913 uint256 constant DAOTreasurySupply = 1_000_000_000e18 - airdropSupply -

teamSupply;

1914

1915 bool public vestStarted = false;

1916

1917

Layer2DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1913

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1912 uint256 constant teamSupply = 100_000_000e18;

1913 uint256 constant DAOTreasurySupply = 1_000_000_000e18 - airdropSupply -

teamSupply;

1914

1915 bool public vestStarted = false;

1916

1917

Layer2DAO | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 388

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

387 unchecked {

388 counter._value = value - 1;

389 }

390 }

391

392

Layer2DAO | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1616

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1615 uint256 pos = _checkpoints[account].length;

1616 return pos == 0 ? 0 : _checkpoints[account][pos - 1].votes;

1617 }

1618

1619 /**

1620

Layer2DAO | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1670

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1669

1670 return high == 0 ? 0 : ckpts[high - 1].votes;

1671 }

1672

1673 /**

1674

Layer2DAO | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1782

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1781 uint256 pos = ckpts.length;

1782 oldWeight = pos == 0 ? 0 : ckpts[pos - 1].votes;

1783 newWeight = op(oldWeight, delta);

1784

1785 if (pos > 0 && ckpts[pos - 1].fromBlock == block.number) {

1786

Layer2DAO | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1785

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1784

1785 if (pos > 0 && ckpts[pos - 1].fromBlock == block.number) {

1786 ckpts[pos - 1].votes = SafeCast.toUint224(newWeight);

1787 } else {

1788 ckpts.push(Checkpoint({fromBlock: SafeCast.toUint32(block.number), votes:

SafeCast.toUint224(newWeight)}));

1789

Layer2DAO | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1786

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- L2DAOToken.sol

Locations

1785 if (pos > 0 && ckpts[pos - 1].fromBlock == block.number) {

1786 ckpts[pos - 1].votes = SafeCast.toUint224(newWeight);

1787 } else {

1788 ckpts.push(Checkpoint({fromBlock: SafeCast.toUint32(block.number), votes:

SafeCast.toUint224(newWeight)}));

1789 }

1790

Layer2DAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 11

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- L2DAOToken.sol

Locations

10

11 pragma solidity ^0.8.0;

12

13 /**

14 * @dev These functions deal with verification of Merkle Trees proofs.

15

Layer2DAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 66

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- L2DAOToken.sol

Locations

65

66 pragma solidity ^0.8.0;

67

68 /**

69 * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow

70

Layer2DAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 310

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- L2DAOToken.sol

Locations

309

310 pragma solidity ^0.8.0;

311

312 /**

313 * @dev Standard math utilities missing in the Solidity language.

314

Layer2DAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 356

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- L2DAOToken.sol

Locations

355

356 pragma solidity ^0.8.0;

357

358 /**

359 * @title Counters

360

Layer2DAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 402

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- L2DAOToken.sol

Locations

401

402 pragma solidity ^0.8.0;

403

404 /**

405 * @dev String operations.

406

Layer2DAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 472

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- L2DAOToken.sol

Locations

471

472 pragma solidity ^0.8.0;

473

474

475 /**

476

Layer2DAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 708

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- L2DAOToken.sol

Locations

707

708 pragma solidity ^0.8.0;

709

710

711 /**

712

Layer2DAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 814

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- L2DAOToken.sol

Locations

813

814 pragma solidity ^0.8.0;

815

816 /**

817 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via

signatures, as defined in

818

Layer2DAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 877

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- L2DAOToken.sol

Locations

876

877 pragma solidity ^0.8.0;

878

879 /**

880 * @dev Provides information about the current execution context, including the

881

Layer2DAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 904

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- L2DAOToken.sol

Locations

903

904 pragma solidity ^0.8.0;

905

906

907 /**

908

Layer2DAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 982

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- L2DAOToken.sol

Locations

981

982 pragma solidity ^0.8.0;

983

984 /**

985 * @dev Interface of the ERC20 standard as defined in the EIP.

986

Layer2DAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1067

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- L2DAOToken.sol

Locations

1066

1067 pragma solidity ^0.8.0;

1068

1069

1070 /**

1071

Layer2DAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1097

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- L2DAOToken.sol

Locations

1096

1097 pragma solidity ^0.8.0;

1098

1099

1100

1101

Layer2DAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1455

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- L2DAOToken.sol

Locations

1454

1455 pragma solidity ^0.8.0;

1456

1457

1458

1459

Layer2DAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1544

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- L2DAOToken.sol

Locations

1543

1544 pragma solidity ^0.8.0;

1545

1546

1547

1548

Layer2DAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1804

low SEVERITY
The current pragma Solidity directive is ""^0.8.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- L2DAOToken.sol

Locations

1803

1804 pragma solidity ^0.8.2;

1805

1806

1807 /**

1808

Layer2DAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1888

low SEVERITY
The current pragma Solidity directive is ""^0.8.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- L2DAOToken.sol

Locations

1887

1888 pragma solidity ^0.8.2;

1889

1890

1891

1892

Layer2DAO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 48

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- L2DAOToken.sol

Locations

47 for (uint256 i = 0; i < proof.length; i++) {

48 bytes32 proofElement = proof[i];

49 if (computedHash <= proofElement) {

50 // Hash(current computed hash + current element of the proof)

51 computedHash = keccak256(abi.encodePacked(computedHash, proofElement));

52

Layer2DAO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 429

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- L2DAOToken.sol

Locations

428 digits -= 1;

429 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

430 value /= 10;

431 }

432 return string(buffer);

433

Layer2DAO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 456

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- L2DAOToken.sol

Locations

455 bytes memory buffer = new bytes(2 * length + 2);

456 buffer[0] = "0";

457 buffer[1] = "x";

458 for (uint256 i = 2 * length + 1; i > 1; --i) {

459 buffer[i] = _HEX_SYMBOLS[value & 0xf];

460

Layer2DAO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 457

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- L2DAOToken.sol

Locations

456 buffer[0] = "0";

457 buffer[1] = "x";

458 for (uint256 i = 2 * length + 1; i > 1; --i) {

459 buffer[i] = _HEX_SYMBOLS[value & 0xf];

460 value >>= 4;

461

Layer2DAO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 459

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- L2DAOToken.sol

Locations

458 for (uint256 i = 2 * length + 1; i > 1; --i) {

459 buffer[i] = _HEX_SYMBOLS[value & 0xf];

460 value >>= 4;

461 }

462 require(value == 0, "Strings: hex length insufficient");

463

Layer2DAO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 459

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- L2DAOToken.sol

Locations

458 for (uint256 i = 2 * length + 1; i > 1; --i) {

459 buffer[i] = _HEX_SYMBOLS[value & 0xf];

460 value >>= 4;

461 }

462 require(value == 0, "Strings: hex length insufficient");

463

Layer2DAO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1594

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- L2DAOToken.sol

Locations

1593 function checkpoints(address account, uint32 pos) public view virtual returns

(Checkpoint memory) {

1594 return _checkpoints[account][pos];

1595 }

1596

1597 /**

1598

Layer2DAO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1616

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- L2DAOToken.sol

Locations

1615 uint256 pos = _checkpoints[account].length;

1616 return pos == 0 ? 0 : _checkpoints[account][pos - 1].votes;

1617 }

1618

1619 /**

1620

Layer2DAO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1663

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- L2DAOToken.sol

Locations

1662 uint256 mid = Math.average(low, high);

1663 if (ckpts[mid].fromBlock > blockNumber) {

1664 high = mid;

1665 } else {

1666 low = mid + 1;

1667

Layer2DAO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1670

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- L2DAOToken.sol

Locations

1669

1670 return high == 0 ? 0 : ckpts[high - 1].votes;

1671 }

1672

1673 /**

1674

Layer2DAO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1782

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- L2DAOToken.sol

Locations

1781 uint256 pos = ckpts.length;

1782 oldWeight = pos == 0 ? 0 : ckpts[pos - 1].votes;

1783 newWeight = op(oldWeight, delta);

1784

1785 if (pos > 0 && ckpts[pos - 1].fromBlock == block.number) {

1786

Layer2DAO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1785

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- L2DAOToken.sol

Locations

1784

1785 if (pos > 0 && ckpts[pos - 1].fromBlock == block.number) {

1786 ckpts[pos - 1].votes = SafeCast.toUint224(newWeight);

1787 } else {

1788 ckpts.push(Checkpoint({fromBlock: SafeCast.toUint32(block.number), votes:

SafeCast.toUint224(newWeight)}));

1789

Layer2DAO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1786

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- L2DAOToken.sol

Locations

1785 if (pos > 0 && ckpts[pos - 1].fromBlock == block.number) {

1786 ckpts[pos - 1].votes = SafeCast.toUint224(newWeight);

1787 } else {

1788 ckpts.push(Checkpoint({fromBlock: SafeCast.toUint32(block.number), votes:

SafeCast.toUint224(newWeight)}));

1789 }

1790

Layer2DAO | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1627

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- L2DAOToken.sol

Locations

1626 function getPastVotes(address account, uint256 blockNumber) public view returns

(uint256) {

1627 require(blockNumber < block.number, "ERC20Votes: block not yet mined");

1628 return _checkpointsLookup(_checkpoints[account], blockNumber);

1629 }

1630

1631

Layer2DAO | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1640

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- L2DAOToken.sol

Locations

1639 function getPastTotalSupply(uint256 blockNumber) public view returns (uint256) {

1640 require(blockNumber < block.number, "ERC20Votes: block not yet mined");

1641 return _checkpointsLookup(_totalSupplyCheckpoints, blockNumber);

1642 }

1643

1644

Layer2DAO | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1785

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- L2DAOToken.sol

Locations

1784

1785 if (pos > 0 && ckpts[pos - 1].fromBlock == block.number) {

1786 ckpts[pos - 1].votes = SafeCast.toUint224(newWeight);

1787 } else {

1788 ckpts.push(Checkpoint({fromBlock: SafeCast.toUint32(block.number), votes:

SafeCast.toUint224(newWeight)}));

1789

Layer2DAO | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1788

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- L2DAOToken.sol

Locations

1787 } else {

1788 ckpts.push(Checkpoint({fromBlock: SafeCast.toUint32(block.number), votes:

SafeCast.toUint224(newWeight)}));

1789 }

1790 }

1791

1792

Layer2DAO | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Layer2DAO | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

